SwePub
Sök i LIBRIS databas

  Extended search

onr:"swepub:oai:DiVA.org:uu-432632"
 

Search: onr:"swepub:oai:DiVA.org:uu-432632" > The Energy, Momentu...

  • 1 of 1
  • Previous record
  • Next record
  •    To hitlist

The Energy, Momentum, and Peak Power Radiated by Negative Lightning Return Strokes

Cooray, Vernon, 1952- (author)
Uppsala universitet,Elektricitetslära
Lobato, Andre (author)
Uppsala universitet,Elektricitetslära
 (creator_code:org_t)
2020-11-29
2020
English.
In: Atmosphere. - : MDPI AG. - 2073-4433. ; 11:12
  • Journal article (peer-reviewed)
Abstract Subject headings
Close  
  • Electromagnetic radiation fields generated by return strokes transport both energy and momentum from the return stroke to outer space. The momentum transported by the radiation field has only a vertical or z component due to azimuthal symmetry (cylindrical symmetry) associated with a vertical return stroke. In this paper, the energy, momentum, and peak power radiated by return strokes as a function of the return stroke current, return stroke speed, and the zero-crossing time of the radiation fields are studied. The results obtained by numerical simulations for the energy, vertical momentum, and the peak power radiated by lightning return strokes (all parameters normalized by dividing them by the square of the radiation field peak at 100 km) are the following: A typical first return stroke generating a radiation field having a 50 μs zero-crossing time will dissipate field normalized energy of about (1.7–2.5) × 103 J/(V/m)2 and field-normalized vertical momentum of approximately (2.3–3.1) × 10−6 Kg m/s/(V/m)2. A radiation field with a zero-crossing time of 70 μs will dissipate about (2.6–3.4) × 103 J/(V/m)2 in field-normalized energy and (3.2–4.3) × 10−6 Kg m/s/(V/m)2 in field-normalized vertical momentum. The results show that, for a given peak radiation field, the radiated energy and momentum increase with increasing zero-crossing time of the radiation field. The normalized peak power generated by a first return stroke radiation field is about 1.2 × 108 W/(V/m)2 and the peak power is generated within about 5–6 μs from the beginning of the return stroke. Conversely, a typical subsequent return stroke generating a radiation field having a 40 μs zero-crossing time will dissipate field-normalized energy of about (6–9) × 102 J/(V/m)2 and field-normalized vertical momentum of approximately (7.5–11) × 10−7 Kg m/s/(V/m)2. The field-normalized peak power generated by a subsequent return stroke radiation field is about 1.26 × 108 W/(V/m)2 and the peak power is generated within about 0.7–0.8 μs from the beginning of the return stroke. In addition to these parameters, the possible upper bounds for the energy and momentum radiated by return strokes are also presented.

Subject headings

TEKNIK OCH TEKNOLOGIER  -- Elektroteknik och elektronik -- Annan elektroteknik och elektronik (hsv//swe)
ENGINEERING AND TECHNOLOGY  -- Electrical Engineering, Electronic Engineering, Information Engineering -- Other Electrical Engineering, Electronic Engineering, Information Engineering (hsv//eng)
NATURVETENSKAP  -- Geovetenskap och miljövetenskap -- Meteorologi och atmosfärforskning (hsv//swe)
NATURAL SCIENCES  -- Earth and Related Environmental Sciences -- Meteorology and Atmospheric Sciences (hsv//eng)

Keyword

lightning
return stroke
electromagnetic radiation
energy
power
momentum

Publication and Content Type

ref (subject category)
art (subject category)

Find in a library

  • Atmosphere (Search for host publication in LIBRIS)

To the university's database

  • 1 of 1
  • Previous record
  • Next record
  •    To hitlist

Find more in SwePub

By the author/editor
Cooray, Vernon, ...
Lobato, Andre
About the subject
ENGINEERING AND TECHNOLOGY
ENGINEERING AND ...
and Electrical Engin ...
and Other Electrical ...
NATURAL SCIENCES
NATURAL SCIENCES
and Earth and Relate ...
and Meteorology and ...
Articles in the publication
Atmosphere
By the university
Uppsala University

Search outside SwePub

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Close

Copy and save the link in order to return to this view