SwePub
Sök i LIBRIS databas

  Extended search

onr:"swepub:oai:DiVA.org:uu-446927"
 

Search: onr:"swepub:oai:DiVA.org:uu-446927" > Global patterns and...

  • 1 of 1
  • Previous record
  • Next record
  •    To hitlist

Global patterns and rates of habitat transitions across the eukaryotic tree of life

Jamy, Mahwash (author)
Uppsala universitet,Systematisk biologi
Biwer, Charlie (author)
Uppsala universitet,Systematisk biologi
Vaulot, Daniel (author)
CNRS, UMR7144, Team ECOMAP, Station Biologique, Sorbonne Université, Roscoff, France
show more...
Obiol, Aleix (author)
Department of Marine Biology and Oceanography, Institut de Ciències del Mar (ICM-CSIC), Barcelona, Spain
Jing, Hongmei (author)
CAS Key Lab for Experimental Study Under Deep-sea Extreme Conditions, Institute of Deep-sea Science and Engineering, Chinese Academy of Sciences, Sanya, China
Peura, Sari (author)
Uppsala universitet,Limnologi,Science for Life Laboratory, SciLifeLab
Massana, Ramon (author)
Department of Marine Biology and Oceanography, Institut de Ciències del Mar (ICM-CSIC), Barcelona, Spain
Burki, Fabien (author)
Uppsala universitet,Systematisk biologi,Science for Life Laboratory, SciLifeLab
show less...
 (creator_code:org_t)
2022-08-04
2022
English.
In: Nature Ecology & Evolution. - : Springer Nature. - 2397-334X. ; 6:10, s. 1458-1470
  • Journal article (peer-reviewed)
Abstract Subject headings
Close  
  • The successful colonization of new habitats has played a fundamental role during the evolution of life. Salinity is one of the strongest barriers for organisms to cross, which has resulted in the evolution of distinct marine and non-marine (including both freshwater and soil) communities. Although microbes represent by far the vast majority of eukaryote diversity, the role of the salt barrier in shaping the diversity across the eukaryotic tree is poorly known. Traditional views suggest rare and ancient marine/non-marine transitions but this view is being challenged by the discovery of several recently transitioned lineages. Here, we investigate habitat evolution across the tree of eukaryotes using a unique set of taxon-rich phylogenies inferred from a combination of long-read and short-read environmental metabarcoding data spanning the ribosomal DNA operon. Our results show that, overall, marine and non-marine microbial communities are phylogenetically distinct but transitions have occurred in both directions in almost all major eukaryotic lineages, with hundreds of transition events detected. Some groups have experienced relatively high rates of transitions, most notably fungi for which crossing the salt barrier has probably been an important aspect of their successful diversification. At the deepest phylogenetic levels, ancestral habitat reconstruction analyses suggest that eukaryotes may have first evolved in non-marine habitats and that the two largest known eukaryotic assemblages (TSAR and Amorphea) arose in different habitats. Overall, our findings indicate that the salt barrier has played an important role during eukaryote evolution and provide a global perspective on habitat transitions in this domain of life.

Subject headings

NATURVETENSKAP  -- Biologi -- Evolutionsbiologi (hsv//swe)
NATURAL SCIENCES  -- Biological Sciences -- Evolutionary Biology (hsv//eng)

Keyword

protists
habitat
marine-terrestrial
salt barrier
long-read metabarcoding
ancestral state reconstruction

Publication and Content Type

ref (subject category)
art (subject category)

Find in a library

To the university's database

  • 1 of 1
  • Previous record
  • Next record
  •    To hitlist

Search outside SwePub

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Close

Copy and save the link in order to return to this view