SwePub
Sök i LIBRIS databas

  Extended search

onr:"swepub:oai:DiVA.org:uu-458468"
 

Search: onr:"swepub:oai:DiVA.org:uu-458468" > Pseudoelasticity of...

  • 1 of 1
  • Previous record
  • Next record
  •    To hitlist

Pseudoelasticity of SrNi2P2 Micropillar via Double Lattice Collapse and Expansion

Xiao, Shuyang (author)
Univ Connecticut, Dept Mat Sci & Engn, Storrs, CT 06269 USA.;Univ Connecticut, Inst Mat Sci, Storrs, CT 06269 USA.
Borisov, Vladislav (author)
Uppsala universitet,Materialteori
Gorgen-Lesseux, Guilherme (author)
Iowa State Univ, Ames Lab, Ames, IA 50011 USA.;Iowa State Univ, Dept Phys & Astron, Ames, IA 50011 USA.
show more...
Rommel, Sarshad (author)
Univ Connecticut, Dept Mat Sci & Engn, Storrs, CT 06269 USA.;Univ Connecticut, Inst Mat Sci, Storrs, CT 06269 USA.
Song, Gyuho (author)
Univ Connecticut, Dept Mat Sci & Engn, Storrs, CT 06269 USA.;Univ Connecticut, Inst Mat Sci, Storrs, CT 06269 USA.
Maita, Jessica M. (author)
Univ Connecticut, Dept Mat Sci & Engn, Storrs, CT 06269 USA.;Univ Connecticut, Inst Mat Sci, Storrs, CT 06269 USA.
Aindow, Mark (author)
Univ Connecticut, Dept Mat Sci & Engn, Storrs, CT 06269 USA.;Univ Connecticut, Inst Mat Sci, Storrs, CT 06269 USA.
Valenti, Roser (author)
Goethe Univ, Inst Theoret Phys, D-60438 Frankfurt, Germany.
Canfield, Paul C. (author)
Iowa State Univ, Ames Lab, Ames, IA 50011 USA.;Iowa State Univ, Dept Phys & Astron, Ames, IA 50011 USA.
Lee, Seok-Woo (author)
Univ Connecticut, Dept Mat Sci & Engn, Storrs, CT 06269 USA.;Univ Connecticut, Inst Mat Sci, Storrs, CT 06269 USA.
show less...
Univ Connecticut, Dept Mat Sci & Engn, Storrs, CT 06269 USA;Univ Connecticut, Inst Mat Sci, Storrs, CT 06269 USA. Materialteori (creator_code:org_t)
2021-09-24
2021
English.
In: Nano Letters. - : American Chemical Society (ACS). - 1530-6984 .- 1530-6992. ; 21:19, s. 7913-7920
  • Journal article (peer-reviewed)
Abstract Subject headings
Close  
  • The maximum recoverable strain of most crystalline solids is less than 1% because plastic deformation or fracture usually occurs at a small strain. In this work, we show that a SrNi2P2 micropillar exhibits pseudoelasticity with a large maximum recoverable strain of similar to 14% under uniaxial compression via unique reversible structural transformation, double lattice collapse-expansion that is repeatable under cyclic loading. Its high yield strength (similar to 3.8 +/- 0.5 GPa) and large maximum recoverable strain bring out the ultrahigh modulus of resilience (similar to 146 +/- 19 MJ/m(3)), a few orders of magnitude higher than that of most engineering materials. The double lattice collapse-expansion mechanism shows stress-strain behaviors similar to that of conventional shape-memory alloys, such as hysteresis and thermomechanical actuation, even though the structural changes involved are completely different. Our work suggests that the discovery of a new class of high-performance ThCr2Si2-structured materials will open new research opportunities in the field of pseudoelasticity.

Subject headings

NATURVETENSKAP  -- Kemi -- Materialkemi (hsv//swe)
NATURAL SCIENCES  -- Chemical Sciences -- Materials Chemistry (hsv//eng)

Keyword

SrNi2P2
micropillar compression
pseudoelasticity
maximum recoverable strain
density functional theory

Publication and Content Type

ref (subject category)
art (subject category)

Find in a library

To the university's database

  • 1 of 1
  • Previous record
  • Next record
  •    To hitlist

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Close

Copy and save the link in order to return to this view