SwePub
Sök i LIBRIS databas

  Extended search

onr:"swepub:oai:DiVA.org:uu-486601"
 

Search: onr:"swepub:oai:DiVA.org:uu-486601" > Metabolic engineeri...

  • 1 of 1
  • Previous record
  • Next record
  •    To hitlist

Metabolic engineering of Synechocystis sp. PCC 6803 for the improved production of phenylpropanoids

Kukil, Kateryna (author)
Uppsala universitet,Molekylär biomimetik,Mikrobiell kemi
Lindberg, Pia (author)
Uppsala universitet,Molekylär biomimetik,Mikrobiell kemi
 (creator_code:org_t)
BioMed Central (BMC), 2024
2024
English.
In: Microbial Cell Factories. - : BioMed Central (BMC). - 1475-2859. ; 23
  • Journal article (peer-reviewed)
Abstract Subject headings
Close  
  • Background: Phenylpropanoids are a large group of plant secondary metabolites with various biological functions, derived from aromatic amino acids. Cyanobacteria are promising host organisms for sustainable production of plant phenylpropanoids. We have previously engineered Synechocystis sp. PCC 6803 to produce trans-cinnamic acid (tCA) and p-coumaric acid (pCou), the first intermediates of phenylpropanoid pathway, by overexpression of phenylalanine- and tyrosine ammonia lyases. In this study, we aimed to enhance the production of the target compounds tCA and pCou in Synechocystis.Results: We eliminated the 4-hydroxyphenylpyruvate dioxygenase (HPPD) activity, which is a competing pathway consuming tyrosine and, possibly, phenylalanine for tocopherol synthesis. Moreover, several genes of the terminal steps of the shikimate pathway were overexpressed alone or in operons, such as aromatic transaminases, feedback insensitive cyclohexadienyl dehydrogenase (TyrC) from Zymomonas mobilis and the chorismate mutase (CM) domain of the fused chorismate mutase/prephenate dehydratase enzyme from Escherichia coli. The obtained engineered strains demonstrated nearly 1.5 times enhanced tCA and pCou production when HPPD was knocked out compared to the parental production strains, accumulating 138 +/- 3.5 mg L-1 of tCA and 72.3 +/- 10.3 mg L-1 of pCou after seven days of photoautotrophic growth. However, there was no further improvement when any of the pathway genes were overexpressed. Finally, we used previously obtained AtPRM8 and TsPRM8 Synechocystis strains with deregulated shikimate pathway as a background for the overexpression of synthetic constructs with ppd knockout.Conclusions: HPPD elimination enhances the tCA and pCou productivity to a similar extent. The use of PRM8 based strains as a background for overexpression of synthetic constructs, however, did not promote tCA and pCou titers, which indicates a tight regulation of the terminal steps of phenylalanine and tyrosine synthesis. This work contributes to establishing cyanobacteria as hosts for phenylpropanoid production.

Subject headings

NATURVETENSKAP  -- Biologi -- Biokemi och molekylärbiologi (hsv//swe)
NATURAL SCIENCES  -- Biological Sciences -- Biochemistry and Molecular Biology (hsv//eng)

Keyword

Synechocystis sp. PCC 6803
phenylalanine ammonia lyase
phenylpropanoids
Chemistry with specialization in Microbial Chemistry
Kemi med inriktning mot mikrobiell kemi

Publication and Content Type

ref (subject category)
art (subject category)

Find in a library

To the university's database

  • 1 of 1
  • Previous record
  • Next record
  •    To hitlist

Find more in SwePub

By the author/editor
Kukil, Kateryna
Lindberg, Pia
About the subject
NATURAL SCIENCES
NATURAL SCIENCES
and Biological Scien ...
and Biochemistry and ...
Articles in the publication
Microbial Cell F ...
By the university
Uppsala University

Search outside SwePub

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Close

Copy and save the link in order to return to this view