SwePub
Sök i LIBRIS databas

  Extended search

onr:"swepub:oai:DiVA.org:uu-526189"
 

Search: onr:"swepub:oai:DiVA.org:uu-526189" > Exploiting hot elec...

  • 1 of 1
  • Previous record
  • Next record
  •    To hitlist

Exploiting hot electrons from a plasmon nanohybrid system for the photoelectroreduction of CO2

Dey, Ananta (author)
Uppsala universitet,Fysikalisk kemi
Silveira, Vitor R. (author)
Uppsala universitet,Fysikalisk kemi
Bericat Vadell, Robert (author)
Uppsala universitet,Fysikalisk kemi
show more...
Lindblad, Andreas, Lecturer, 1978- (author)
Uppsala universitet,Energimaterialens fysik
Lindblad, Rebecka, Dr, 1984- (author)
Uppsala universitet,Institutionen för fysik och astronomi
Shtender, Vitalii (author)
Uppsala universitet,Tillämpad materialvetenskap
Görlin, Mikaela (author)
Uppsala universitet,Strukturkemi
Sá, Jacinto (author)
Uppsala universitet,Fysikalisk kemi,Polish Acad Sci, Inst Phys Chem, Marcina Kasprzaka 44-52, PL-01224 Warsaw, Poland
show less...
 (creator_code:org_t)
Springer Nature, 2024
2024
English.
In: Communications Chemistry. - : Springer Nature. - 2399-3669. ; 7:1
  • Journal article (peer-reviewed)
Abstract Subject headings
Close  
  • Plasmonic materials convert light into hot carriers and heat to mediate catalytic transformation. The participation of hot carriers (photocatalysis) remains a subject of vigorous debate, often argued on the basis that carriers have ultrashort lifetime incompatible with drive photochemical processes. This study utilises plasmon hot electrons directly in the photoelectrocatalytic reduction of CO2 to CO via a Ppasmonic nanohybrid. Through the deliberate construction of a plasmonic nanohybrid system comprising NiO/Au/ReI(phen-NH2)(CO)3Cl (phen-NH2 = 1,10-Phenanthrolin-5-amine) that is unstable above 580 K; it was possible to demonstrate hot electrons are the main culprit in CO2 reduction. The engagement of hot electrons in the catalytic process is derived from many approaches that cover the processes in real-time, from ultrafast charge generation and separation to catalysis occurring on the minute scale. Unbiased in situ FTIR spectroscopy confirmed the stepwise reduction of the catalytic system. This, coupled with the low thermal stability of the ReI(phen-NH2)(CO)3Cl complex, explicitly establishes plasmonic hot carriers as the primary contributors to the process. Therefore, mediating catalytic reactions by plasmon hot carriers is feasible and holds promise for further exploration. Plasmonic nanohybrid systems can leverage plasmon’s unique photophysics and capabilities because they expedite the carrier’s lifetime.

Subject headings

NATURVETENSKAP  -- Kemi -- Fysikalisk kemi (hsv//swe)
NATURAL SCIENCES  -- Chemical Sciences -- Physical Chemistry (hsv//eng)
NATURVETENSKAP  -- Fysik -- Atom- och molekylfysik och optik (hsv//swe)
NATURAL SCIENCES  -- Physical Sciences -- Atom and Molecular Physics and Optics (hsv//eng)

Publication and Content Type

ref (subject category)
art (subject category)

Find in a library

To the university's database

  • 1 of 1
  • Previous record
  • Next record
  •    To hitlist

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Close

Copy and save the link in order to return to this view