SwePub
Sök i LIBRIS databas

  Extended search

onr:"swepub:oai:DiVA.org:uu-6343"
 

Search: onr:"swepub:oai:DiVA.org:uu-6343" > Evaluation of Respi...

  • 1 of 1
  • Previous record
  • Next record
  •    To hitlist

Evaluation of Respiratory Mechanics by Flow Signal Analysis : With Emphasis on Detecting Partial Endotracheal Tube Obstruction During Mechanical Ventilation

Kawati, Rafael, 1967- (author)
Uppsala universitet,Anestesiologi och intensivvård
Lichtwarck-Aschoff, Michael (thesis advisor)
Sjöstrand, Ulf (thesis advisor)
show more...
Larsson, Anders, professor (opponent)
Århus University Hospital, Aalborg
show less...
 (creator_code:org_t)
ISBN 9155464637
Uppsala : Acta Universitatis Upsaliensis, 2006
English 42 s.
Series: Digital Comprehensive Summaries of Uppsala Dissertations from the Faculty of Medicine, 1651-6206 ; 106
  • Doctoral thesis (other academic/artistic)
Abstract Subject headings
Close  
  • Evaluating respiratory mechanics during dynamic conditions without interrupting ongoing ventilation and flow, adds to the information obtained from the mechanics derived from static (= no flow) conditions, i.e., the flow signal has the potential to provide information on the properties of the respiratory system (including the tubing system). Hence monitoring the changes in the flow signal during ongoing mechanical ventilation would give information about the dynamic mechanics of the respiratory system. Any change in the mechanics of the respiratory system including the endotracheal tube (ETT) and the ventilatory circuit would affect the shape of the flow signal. Knowledge of the airway pressure distal to the ETT at the carina level (= tracheal pressure) is required for calculating the extra resistive load exerted by the endotracheal tube in order to compensate for it. In a porcine model, the flow signal was used to non-invasively calculate tracheal pressure. There was good agreement between calculated and measured tracheal pressure with different modes of ventilation. However, calculation of tracheal pressure assumes that the inner diameter of the ETT is known, and this assumption is not met if the inner diameter is narrowed by secretions. Flow that passes a narrowed tube is decelerated and this is most pronounced with the high flow of early expiration, yielding a typical time constant over expiratory volume pattern that is easy to recognize during mechanical ventilation. This pattern reliably detected partial endotracheal obstruction during volume and pressure controlled mechanical ventilation. A change in compliance of the respiratory system modifies the elastic recoil and this also affects the rate of the expiratory flow and the shape of its signal. In a porcine model, lung volume gains on the flow signal generated by the heartbeats (cardiogenic oscillations) provided information about the compliance of the respiratory system during ongoing mechanical ventilationIn conclusion analyzing the flow signal during ongoing ventilation can be a cheap, non-invasive and reliable tool to monitor the elastic and resistive properties of the respiratory system including the endotracheal tube.

Subject headings

MEDICIN OCH HÄLSOVETENSKAP  -- Klinisk medicin -- Anestesi och intensivvård (hsv//swe)
MEDICAL AND HEALTH SCIENCES  -- Clinical Medicine -- Anesthesiology and Intensive Care (hsv//eng)

Keyword

Anaesthesiology and intensive care
Complication: obstructed endotracheal tube
Equipment:endotracheal tube
Heart: cardiogenic oscillation
Respiratory mechanics: respiratory mechanics
Ventilation: controlled mechanical
Anestesiologi och intensivvård
Anaesthetics and intensive care
Anestesiologi och intensivvård

Publication and Content Type

vet (subject category)
dok (subject category)

Find in a library

To the university's database

  • 1 of 1
  • Previous record
  • Next record
  •    To hitlist

Search outside SwePub

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Close

Copy and save the link in order to return to this view