SwePub
Sök i LIBRIS databas

  Extended search

onr:"swepub:oai:DiVA.org:uu-689"
 

Search: onr:"swepub:oai:DiVA.org:uu-689" > Estimation of hydro...

  • 1 of 1
  • Previous record
  • Next record
  •    To hitlist

Estimation of hydrophobicity of insulating surfaces by studying sessile water drops

Berg, Marcus (author)
Uppsala universitet,Elektricitetslära och åskforskning
 (creator_code:org_t)
ISBN 9155450601
Uppsala : Acta Universitatis Upsaliensis, 2001
English 119 s.
Series: Uppsala Dissertations from the Faculty of Science and Technology, 1104-2516 ; 33
  • Doctoral thesis (other academic/artistic)
Abstract Subject headings
Close  
  • Today, the traditional insulator materials for high voltage powerlines, i.e. glass and porcelain, are gradually being replaced with new materials, most notably silicone rubber. One of the properties that make composite insulators based on silicone rubber attractive is their hydrophobicity, which in the laboratory can be estimated by measuring contact angles of sessile water drops. The hydrophobic surface gives composite insulators better electrical flashover characteristics than hydrophilic insulators when being wet or polluted. However, the hydrophobicity of insulators in service is degraded by many factors such as pollution deposits, surface arcing and ageing, and should therefore be checked regularly. In this thesis, image analysis of water drop patterns on an inclined flat polymeric insulator surface has been performed in order to find a simple mathematical function that indicates the level of hydrophobicity of the insulator surface. The result, given the name of "Average of Normalised Entropies", ANE, seems to correlate well with hydrophobicity as defined by the classification of the Swedish Transmission Research Institute. This function is a composition of three other functions, viz. the standard deviation, the Shannon entropy and the "fraction of small differences". All these are in turn based on the histogram of horizontal nearest-neighbour pixel differences for a given digital greyscale image of a water drop pattern. ANE is fairly independent of illumination intensity (exposure), electronic gain and offset, and also of limited changes in the surface inclination. It is known that the shape of water drops can enhance the local electric field and influence the initiation of electrical discharges on the insulator surface. In this thesis, a particularly simple form of the Young-Laplace equation governing the shape of a sessile drop is derived and augmented with measures that facilitate efficient numerical computation. This mathematical representation will be useful for simulating axisymmetric drops in a vertical electric field as well as for contact angle measurement methods based on fitting theoretical drop shapes to sessile drops in digital images.

Subject headings

TEKNIK OCH TEKNOLOGIER  -- Materialteknik (hsv//swe)
ENGINEERING AND TECHNOLOGY  -- Materials Engineering (hsv//eng)

Keyword

Materials science
hydrophobicity
contact angle
insulator
water
silicone
image processing
image analysis
Young-Laplace equation
droplet
axisymmetric
Materialvetenskap
Materials science
Teknisk materialvetenskap
Electricity, Esp The Study Of Transients and Discharges
elektricitetslära, ssk studiet av transienter och urladdning

Publication and Content Type

vet (subject category)
dok (subject category)

Find in a library

To the university's database

  • 1 of 1
  • Previous record
  • Next record
  •    To hitlist

Find more in SwePub

By the author/editor
Berg, Marcus
About the subject
ENGINEERING AND TECHNOLOGY
ENGINEERING AND ...
and Materials Engine ...
Parts in the series
Uppsala Disserta ...
By the university
Uppsala University

Search outside SwePub

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Close

Copy and save the link in order to return to this view