SwePub
Sök i LIBRIS databas

  Extended search

onr:"swepub:oai:gup.ub.gu.se/146597"
 

Search: onr:"swepub:oai:gup.ub.gu.se/146597" > Astrocyte-mediated ...

  • 1 of 1
  • Previous record
  • Next record
  •    To hitlist

Astrocyte-mediated short-term synaptic depression in the rat hippocampal CA1 area: two modes of decreasing release probability.

Andersson, My, 1980 (author)
Gothenburg University,Göteborgs universitet,Institutionen för neurovetenskap och fysiologi, sektionen för fysiologi,Institute of Neuroscience and Physiology, Department of Physiology
Hanse, Eric, 1962 (author)
Gothenburg University,Göteborgs universitet,Institutionen för neurovetenskap och fysiologi, sektionen för fysiologi,Institute of Neuroscience and Physiology, Department of Physiology
 (creator_code:org_t)
2011-08-24
2011
English.
In: BMC neuroscience. - : Springer Science and Business Media LLC. - 1471-2202. ; 12:1
  • Journal article (peer-reviewed)
Abstract Subject headings
Close  
  • ABSTRACT: BACKGROUND: Synaptic burst activation feeds back as a short-term depression of release probability at hippocampal CA3-CA1 synapses. This short-term synaptic plasticity requires functional astrocytes and it affects both the recently active (< 1 s) synapses (post-burst depression) as well as inactive neighboring synapses (transient heterosynaptic depression). The aim of this study was to investigate and compare the components contributing to the depression of release probability in these two different scenarios. RESULTS: When tested using paired-pulses, following a period of inactivity, the transient heterosynaptic depression was expressed as a reduction in the response to only the first pulse, whereas the response to the second pulse was unaffected. This selective depression of only the first response in a high-frequency burst was shared by the homosynaptic post-burst depression, but it was partially counteracted by augmentation at these recently active synapses. In addition, the expression of the homosynaptic post-burst depression included an astrocyte-mediated reduction of the pool of release-ready primed vesicles. CONCLUSIONS: Our results suggest that activated astrocytes depress the release probability via two different mechanisms; by depression of vesicular release probability only at inactive synapses and by imposing a delay in the recovery of the primed pool of vesicles following depletion. These mechanisms restrict the expression of the astrocyte-mediated depression to temporal windows that are typical for synaptic burst activity.

Subject headings

MEDICIN OCH HÄLSOVETENSKAP  -- Medicinska och farmaceutiska grundvetenskaper -- Neurovetenskaper (hsv//swe)
MEDICAL AND HEALTH SCIENCES  -- Basic Medicine -- Neurosciences (hsv//eng)

Publication and Content Type

ref (subject category)
art (subject category)

Find in a library

To the university's database

  • 1 of 1
  • Previous record
  • Next record
  •    To hitlist

Find more in SwePub

By the author/editor
Andersson, My, 1 ...
Hanse, Eric, 196 ...
About the subject
MEDICAL AND HEALTH SCIENCES
MEDICAL AND HEAL ...
and Basic Medicine
and Neurosciences
Articles in the publication
BMC neuroscience
By the university
University of Gothenburg

Search outside SwePub

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Close

Copy and save the link in order to return to this view