SwePub
Sök i LIBRIS databas

  Extended search

onr:"swepub:oai:gup.ub.gu.se/190361"
 

Search: onr:"swepub:oai:gup.ub.gu.se/190361" > Engineering the Har...

  • 1 of 1
  • Previous record
  • Next record
  •    To hitlist

Engineering the Hardware/Software Interface for Robotic Platforms – A Comparison of Applied Model Checking with Prolog and Alloy

Al Mamun, Md Abdullah, 1982 (author)
Chalmers tekniska högskola,Chalmers University of Technology
Berger, Christian, 1980 (author)
Gothenburg University,Göteborgs universitet,Institutionen för data- och informationsteknik (GU),Department of Computer Science and Engineering (GU),University of Gothenburg
Hansson, Jörgen, 1970 (author)
Chalmers tekniska högskola,Chalmers University of Technology
 (creator_code:org_t)
2013
2013
English.
In: Proceedings of the 4th International Workshop on Domain-Specific Languages and models for ROBotic systems.
  • Conference paper (other academic/artistic)
Abstract Subject headings
Close  
  • Robotic platforms serve different use cases ranging from experiments for prototyping assistive applications up to embedded systems for realizing cyber-physical systems in various domains. We are using 1:10 scale miniature vehicles as a robotic platform to conduct research in the domain of self-driving cars and collaborative vehicle fleets. Thus, experiments with different sensors like e.g. ultra-sonic, infrared, and rotary encoders need to be prepared and realized using our vehicle platform. For each setup, we need to configure the hardware/software interface board to handle all sensors and actors. Therefore, we need to find a specific configuration setting for each pin of the interface board that can handle our current hardware setup but which is also flexible enough to support further sensors or actors for future use cases. In this paper, we show how to model the domain of the configuration space for a hardware/software interface board to enable model checking for solving the tasks of finding any, all, and the best possible pin configuration. We present results from a formal experiment applying the declarative languages Alloy and Prolog to guide the process of engineering the hardware/software interface for robotic platforms on the example of a configuration complexity up to ten pins resulting in a configuration space greater than 14.5 million possibilities. Our results show that our domain model in Alloy performs better compared to Prolog to find feasible solutions for larger configurations with an average time of 0.58s. To find the best solution, our model for Prolog performs better taking only 1.38s for the largest desired configuration; however, this important use case is currently not covered by the existing tools for the hardware used as an example in this article.

Subject headings

NATURVETENSKAP  -- Data- och informationsvetenskap -- Datavetenskap (hsv//swe)
NATURAL SCIENCES  -- Computer and Information Sciences -- Computer Sciences (hsv//eng)
NATURVETENSKAP  -- Data- och informationsvetenskap -- Programvaruteknik (hsv//swe)
NATURAL SCIENCES  -- Computer and Information Sciences -- Software Engineering (hsv//eng)

Keyword

model-checking
Prolog
Alloy
embedded systems
software engineering
embedded systems

Publication and Content Type

vet (subject category)
kon (subject category)

To the university's database

  • 1 of 1
  • Previous record
  • Next record
  •    To hitlist

Find more in SwePub

By the author/editor
Al Mamun, Md Abd ...
Berger, Christia ...
Hansson, Jörgen, ...
About the subject
NATURAL SCIENCES
NATURAL SCIENCES
and Computer and Inf ...
and Computer Science ...
NATURAL SCIENCES
NATURAL SCIENCES
and Computer and Inf ...
and Software Enginee ...
Articles in the publication
By the university
University of Gothenburg
Chalmers University of Technology

Search outside SwePub

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Close

Copy and save the link in order to return to this view