SwePub
Sök i LIBRIS databas

  Extended search

onr:"swepub:oai:gup.ub.gu.se/230894"
 

Search: onr:"swepub:oai:gup.ub.gu.se/230894" > Sensitivity Equatio...

  • 1 of 1
  • Previous record
  • Next record
  •    To hitlist
  • Almquist, Joachim,1980Chalmers tekniska högskola,Chalmers University of Technology (author)

Sensitivity Equations Provide More Robust Gradients and Faster Computation of the FOCE Approximation to the Population Likelihood

  • Article/chapterEnglish2015

Publisher, publication year, extent ...

  • 2015

Numbers

  • LIBRIS-ID:oai:gup.ub.gu.se/230894
  • https://gup.ub.gu.se/publication/230894URI
  • https://research.chalmers.se/publication/230894URI

Supplementary language notes

  • Language:English

Part of subdatabase

Classification

  • Subject category:vet swepub-contenttype
  • Subject category:kon swepub-publicationtype

Notes

  • Objectives: The first order conditional estimation (FOCE) method [1] is still one of the parameter estimation workhorses for nonlinear mixed effects (NLME) modeling used in population pharmacokinetics and pharmacodynamics [2]. However, because this method involves two nested levels of optimizations, with respect to the empirical Bayes estimates and the population parameters, FOCE may be numerically unstable and have long run times, issues which are most apparent for models requiring numerical integration of differential equations. Methods: We propose an alternative implementation of the FOCE method, and the related FOCEI, for parameter estimation in NLME models [3]. Instead of obtaining the gradients needed for the two levels of quasi-Newton optimizations from the standard finite difference approximation, gradients are computed using so called sensitivity equations. Results: The advantages of the approach are demonstrated using different versions of a pharmacokinetic model defined by nonlinear differential equations. We show that both the accuracy and precision of gradients can be improved extensively, which will increase the chances of a successfully converging parameter estimation [4]. We also show that the proposed approach can lead to markedly reduced computational times. The accumulated effect of the novel gradient computations ranged from a 10-fold decrease in run times for the least complex model when comparing to forward finite differences, to a substantial 100-fold decrease for the most complex model when comparing to central finite differences. Conclusions: Considering the use of finite differences in for instance NONMEM and Phoenix NLME, our results suggests that signicant improvements in the execution of FOCE are possible and that the approach of sensitivity equations should be carefully considered for both levels of optimization. References: [1] Wang Y. Derivation of various NONMEM estimation methods. J of Pharmacokin Pharmacodyn (2007) 34(5): 575-593. [2] Johansson ÅM, Ueckert S, Plan EL, Hooker AC, Karlsson MO. Evaluation of bias, precision, robustness and runtime for estimation methods in NONMEM 7. J of Pharmacokin Pharmacodyn (2014) 41(3):223-238. [3] Almquist J, Leander J, Jirstrand M. Using sensitivity equations for computing gradients of the FOCE and FOCEI approximations to the population likelihood. In press J of Pharmacokin Pharmacodyn (2015). [4] Tapani S, Almquist J, Leander J, Ahlström C, Peletier LA, Jirstrand M, Gabrielsson J. Joint Feedback Analysis Modeling of Nonesterified Fatty Acids in Obese Zucker Rats and Normal Sprague–Dawley Rats after Different Routes of Administration of Nicotinic Acid. J Pharmaceutical Sciences (2014), 103(8):2571–2584.

Subject headings and genre

Added entries (persons, corporate bodies, meetings, titles ...)

  • Leander, Jacob,1987Gothenburg University,Göteborgs universitet,Institutionen för matematiska vetenskaper, matematik,Department of Mathematical Sciences, Mathematics,University of Gothenburg,Chalmers tekniska högskola,Chalmers University of Technology(Swepub:cth)jaclea (author)
  • Jirstrand, Mats,1968Chalmers tekniska högskola,Chalmers University of Technology(Swepub:cth)jirstran (author)
  • Chalmers tekniska högskolaInstitutionen för matematiska vetenskaper, matematik (creator_code:org_t)

Related titles

  • In:Proceedings of the 24th Annual meeting of the Population Approach Group in Europe, PAGE2015

Internet link

To the university's database

  • 1 of 1
  • Previous record
  • Next record
  •    To hitlist

Find more in SwePub

By the author/editor
Almquist, Joachi ...
Leander, Jacob, ...
Jirstrand, Mats, ...
About the subject
MEDICAL AND HEALTH SCIENCES
MEDICAL AND HEAL ...
and Basic Medicine
and Pharmacology and ...
NATURAL SCIENCES
NATURAL SCIENCES
and Biological Scien ...
and Bioinformatics a ...
NATURAL SCIENCES
NATURAL SCIENCES
and Computer and Inf ...
NATURAL SCIENCES
NATURAL SCIENCES
and Mathematics
and Computational Ma ...
Articles in the publication
By the university
University of Gothenburg
Chalmers University of Technology

Search outside SwePub

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Close

Copy and save the link in order to return to this view