SwePub
Sök i LIBRIS databas

  Extended search

onr:"swepub:oai:gup.ub.gu.se/238772"
 

Search: onr:"swepub:oai:gup.ub.gu.se/238772" > Analyzing defect in...

  • 1 of 1
  • Previous record
  • Next record
  •    To hitlist

Analyzing defect inflow distribution and applying Bayesian inference method for software defect prediction in large software projects

Rana, Rakesh (author)
Gothenburg University,Göteborgs universitet,Institutionen för data- och informationsteknik (GU),Department of Computer Science and Engineering (GU),University of Gothenburg,Department of Computer Science & Engineering, Chalmers, University of Gothenburg, Göteborg, Sweden
Staron, Miroslaw, 1977 (author)
Gothenburg University,Göteborgs universitet,Institutionen för data- och informationsteknik (GU),Department of Computer Science and Engineering (GU),University of Gothenburg,Department of Computer Science & Engineering, Chalmers, University of Gothenburg, Göteborg, Sweden
Berger, Christian, 1980 (author)
Gothenburg University,Göteborgs universitet,Institutionen för data- och informationsteknik (GU),Department of Computer Science and Engineering (GU),University of Gothenburg,Department of Computer Science & Engineering, Chalmers, University of Gothenburg, Göteborg, Sweden
show more...
Hansson, Jörgen (author)
Högskolan i Skövde,Institutionen för informationsteknologi,Forskningscentrum för Informationsteknologi
Nilsson, M. (author)
Volvo Cars,Volvo Car Group, Göteborg, Sweden
Meding, W. (author)
Telefonaktiebolaget L M Ericsson,Ericsson,Ericsson SW Research, Ericsson AB, Gothenburg, Sweden
show less...
 (creator_code:org_t)
Elsevier BV, 2016
2016
English.
In: Journal of Systems and Software. - : Elsevier BV. - 0164-1212 .- 1873-1228. ; 117, s. 229-244
  • Journal article (peer-reviewed)
Abstract Subject headings
Close  
  • Tracking and predicting quality and reliability is a major challenge in large and distributed software development projects. A number of standard distributions have been successfully used in reliability engineering theory and practice, common among these for modeling software defect inflow being exponential, Weibull, beta and Non-Homogeneous Poisson Process (NHPP). Although standard distribution models have been recognized in reliability engineering practice, their ability to fit defect data from proprietary and OSS software projects is not well understood. Lack of knowledge about underlying defect inflow distribution also leads to difficulty in applying Bayesian based inference methods for software defect prediction. In this paper we explore the defect inflow distribution of total of fourteen large software projects/release from two industrial domain and open source community. We evaluate six standard distributions for their ability to fit the defect inflow data and also assess which information criterion is practical for selecting the distribution with best fit. Our results show that beta distribution provides the best fit to the defect inflow data for all industrial projects as well as majority of OSS projects studied. In the paper we also evaluate how information about defect inflow distribution from historical projects is applied for modeling the prior beliefs/experience in Bayesian analysis which is useful for making software defect predictions early during the software project lifecycle.

Subject headings

TEKNIK OCH TEKNOLOGIER  -- Elektroteknik och elektronik (hsv//swe)
ENGINEERING AND TECHNOLOGY  -- Electrical Engineering, Electronic Engineering, Information Engineering (hsv//eng)
NATURVETENSKAP  -- Data- och informationsvetenskap -- Programvaruteknik (hsv//swe)
NATURAL SCIENCES  -- Computer and Information Sciences -- Software Engineering (hsv//eng)

Keyword

Software
SRGM
Defect Inflow
Software

Publication and Content Type

ref (subject category)
art (subject category)

Find in a library

To the university's database

  • 1 of 1
  • Previous record
  • Next record
  •    To hitlist

Search outside SwePub

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Close

Copy and save the link in order to return to this view