SwePub
Sök i LIBRIS databas

  Extended search

onr:"swepub:oai:gup.ub.gu.se/267781"
 

Search: onr:"swepub:oai:gup.ub.gu.se/267781" > Exposure to the gut...

  • 1 of 1
  • Previous record
  • Next record
  •    To hitlist

Exposure to the gut microbiota drives distinct methylome and transcriptome changes in intestinal epithelial cells during postnatal development

Pan, W. H. (author)
Sommer, Felix (author)
Gothenburg University,Göteborgs universitet,Wallenberglaboratoriet,Wallenberg Laboratory
Falk-Paulsen, M. (author)
show more...
Ulas, T. (author)
Best, P. (author)
Fazio, A. (author)
Kachroo, P. (author)
Luzius, A. (author)
Jentzsch, M. (author)
Rehman, A. (author)
Muller, F. (author)
Lengauer, T. (author)
Walter, J. (author)
Kunzel, S. (author)
Baines, J. F. (author)
Schreiber, S. (author)
Franke, A. (author)
Schultze, J. L. (author)
Bäckhed, Fredrik, 1973 (author)
Gothenburg University,Göteborgs universitet,Wallenberglaboratoriet,Wallenberg Laboratory
Rosenstiel, P. (author)
show less...
 (creator_code:org_t)
2018-04-13
2018
English.
In: Genome Medicine. - : Springer Science and Business Media LLC. - 1756-994X. ; 10
  • Journal article (peer-reviewed)
Abstract Subject headings
Close  
  • Background: The interplay of epigenetic processes and the intestinal microbiota may play an important role in intestinal development and homeostasis. Previous studies have established that the microbiota regulates a large proportion of the intestinal epithelial transcriptome in the adult host, but microbial effects on DNA methylation and gene expression during early postnatal development are still poorly understood. Here, we sought to investigate the microbial effects on DNA methylation and the transcriptome of intestinal epithelial cells (IECs) during postnatal development. Methods: We collected IECs from the small intestine of each of five 1-, 4-and 12 to 16-week-old mice representing the infant, juvenile, and adult states, raised either in the presence or absence of a microbiota. The DNA methylation profile was determined using reduced representation bisulfite sequencing (RRBS) and the epithelial transcriptome by RNA sequencing using paired samples from each individual mouse to analyze the link between microbiota, gene expression, and DNA methylation. Results: We found that microbiota-dependent and -independent processes act together to shape the postnatal development of the transcriptome and DNA methylation signatures of IECs. The bacterial effect on the transcriptome increased over time, whereas most microbiota-dependent DNA methylation differences were detected already early after birth. Microbiota-responsive transcripts could be attributed to stage-specific cellular programs during postnatal development and regulated gene sets involved primarily immune pathways and metabolic processes. Integrated analysis of the methylome and transcriptome data identified 126 genomic loci at which coupled differential DNA methylation and RNA transcription were associated with the presence of intestinal microbiota. We validated a subset of differentially expressed and methylated genes in an independent mouse cohort, indicating the existence of microbiota-dependent " functional" methylation sites which may impact on long-term gene expression signatures in IECs. Conclusions: Our study represents the first genome-wide analysis of microbiota-mediated effects on maturation of DNA methylation signatures and the transcriptional program of IECs after birth. It indicates that the gut microbiota dynamically modulates large portions of the epithelial transcriptome during postnatal development, but targets only a subset of microbially responsive genes through their DNA methylation status.

Subject headings

MEDICIN OCH HÄLSOVETENSKAP  -- Klinisk medicin (hsv//swe)
MEDICAL AND HEALTH SCIENCES  -- Clinical Medicine (hsv//eng)

Keyword

Microbiota
Intestinal epithelial cell
Epigenetics
Methylation
Transcriptomics
inflammatory-bowel-disease
de-novo methylation
dna methylation
gene-expression
early-life
immune homeostasis
innate immunity
mammalian dna
seq data
bacteria
Genetics & Heredity

Publication and Content Type

ref (subject category)
art (subject category)

Find in a library

To the university's database

  • 1 of 1
  • Previous record
  • Next record
  •    To hitlist

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Close

Copy and save the link in order to return to this view