SwePub
Sök i LIBRIS databas

  Extended search

onr:"swepub:oai:gup.ub.gu.se/301357"
 

Search: onr:"swepub:oai:gup.ub.gu.se/301357" > Phylogenetic analys...

  • 1 of 1
  • Previous record
  • Next record
  •    To hitlist

Phylogenetic analysis of the caspase family in bivalves: implications for programmed cell death, immune response and development

Vogeler, Susanne (author)
Gothenburg University,Göteborgs universitet,Institutionen för marina vetenskaper,Department of marine sciences
Carboni, S. (author)
Li, X. (author)
show more...
Joyce, Alyssa (author)
Gothenburg University,Göteborgs universitet,Institutionen för marina vetenskaper,Department of marine sciences
show less...
 (creator_code:org_t)
2021-01-25
2021
English.
In: BMC Genomics. - : Springer Science and Business Media LLC. - 1471-2164. ; 22:1
  • Journal article (peer-reviewed)
Abstract Subject headings
Close  
  • Background Apoptosis is an important process for an organism’s innate immune system to respond to pathogens, while also allowing for cell differentiation and other essential life functions. Caspases are one of the key protease enzymes involved in the apoptotic process, however there is currently a very limited understanding of bivalve caspase diversity and function. Results In this work, we investigated the presence of caspase homologues using a combination of bioinformatics and phylogenetic analyses. We blasted the Crassostrea gigas genome for caspase homologues and identified 35 potential homologues in the addition to the already cloned 23 bivalve caspases. As such, we present information about the phylogenetic relationship of all identified bivalve caspases in relation to their homology to well-established vertebrate and invertebrate caspases. Our results reveal unexpected novelty and complexity in the bivalve caspase family. Notably, we were unable to identify direct homologues to the initiator caspase-9, a key-caspase in the vertebrate apoptotic pathway, inflammatory caspases (caspase-1, −4 or−5) or executioner caspases-3, −6, −7. We also explored the fact that bivalves appear to possess several unique homologues to the initiator caspase groups −2 and−8. Large expansions of caspase-3 like homologues (caspase-3A-C), caspase-3/7 group and caspase-3/7-like homologues were also identified, suggesting unusual roles of caspases with direct implications for our understanding of immune response in relation to common bivalve diseases. Furthermore, we assessed the gene expression of two initiator (Cg2A, Cg8B) and four executioner caspases (Cg3A, Cg3B, Cg3C, Cg3/7) in C. gigas late-larval development and during metamorphosis, indicating that caspase expression varies across the different developmental stages. Conclusion Our analysis provides the first overview of caspases across different bivalve species with essential new insights into caspase diversity, knowledge that can be used for further investigations into immune response to pathogens or regulation of developmental processes.

Subject headings

NATURVETENSKAP  -- Biologi (hsv//swe)
NATURAL SCIENCES  -- Biological Sciences (hsv//eng)

Publication and Content Type

ref (subject category)
art (subject category)

Find in a library

To the university's database

  • 1 of 1
  • Previous record
  • Next record
  •    To hitlist

Find more in SwePub

By the author/editor
Vogeler, Susanne
Carboni, S.
Li, X.
Joyce, Alyssa
About the subject
NATURAL SCIENCES
NATURAL SCIENCES
and Biological Scien ...
Articles in the publication
BMC Genomics
By the university
University of Gothenburg

Search outside SwePub

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Close

Copy and save the link in order to return to this view