SwePub
Sök i LIBRIS databas

  Extended search

onr:"swepub:oai:gup.ub.gu.se/310256"
 

Search: onr:"swepub:oai:gup.ub.gu.se/310256" > Modelling Deep Gree...

  • 1 of 1
  • Previous record
  • Next record
  •    To hitlist

Modelling Deep Green tidal power plant using large eddy simulations and the actuator line method

Fredriksson, Sam, 1966 (author)
Gothenburg University,Göteborgs universitet,Institutionen för marina vetenskaper,Department of marine sciences,University of Gothenburg
Broström, Göran (author)
Gothenburg University,Göteborgs universitet,Institutionen för marina vetenskaper,Department of marine sciences,University of Gothenburg
Bergqvist, B. (author)
Minesto AB,Minesto
show more...
Lennblad, J. (author)
Minesto AB,Minesto
Nilsson, Håkan, 1971 (author)
Chalmers tekniska högskola,Chalmers University of Technology
show less...
 (creator_code:org_t)
Elsevier BV, 2021
2021
English.
In: Renewable Energy. - : Elsevier BV. - 0960-1481 .- 1879-0682. ; 179, s. 1140-1155
  • Journal article (peer-reviewed)
Abstract Subject headings
Close  
  • The Deep Green technique for tidal power generation is suitable for moderate flows which is attractive since larger areas for tidal energy generation hereby can be used. It operates typically at mid-depth and can be seen as a "flying" kite with a turbine and generator attached underneath. It moves in a lying figure-eight path almost perpendicular to the tidal flow. Large eddy simulations and an adaption of the actuator line method (in order to describe arbitrary paths) are used to study the turbulent flow with and without Deep Green for a specific site. This methodology can in later studies be used for e.g. array analysis that include Deep Green interaction. It is seen that Deep Green creates a unique wake composed of two velocity deficit zones with increased velocity in each wake core. The flow has a tendency to be directed downwards which results in locally increased bottom shear. The persistence of flow disturbances of Deep Green can be scaled with its horizontal path width, D-y, with a velocity deficit of 5% at approximately 8-10D(y) downstream of the power plant. The turbulence intensity and power deficit are approximately two times the undisturbed value and 10%, respectively, at 10D(y). (C) 2021 The Authors. Published by Elsevier Ltd.

Subject headings

NATURVETENSKAP  -- Geovetenskap och miljövetenskap (hsv//swe)
NATURAL SCIENCES  -- Earth and Related Environmental Sciences (hsv//eng)
TEKNIK OCH TEKNOLOGIER  -- Maskinteknik -- Energiteknik (hsv//swe)
ENGINEERING AND TECHNOLOGY  -- Mechanical Engineering -- Energy Engineering (hsv//eng)
TEKNIK OCH TEKNOLOGIER  -- Maskinteknik -- Strömningsmekanik och akustik (hsv//swe)
ENGINEERING AND TECHNOLOGY  -- Mechanical Engineering -- Fluid Mechanics and Acoustics (hsv//eng)
TEKNIK OCH TEKNOLOGIER  -- Naturresursteknik -- Marin teknik (hsv//swe)
ENGINEERING AND TECHNOLOGY  -- Environmental Engineering -- Marine Engineering (hsv//eng)

Keyword

Tidal power
Actuator line method
Turbulence
Large eddy simulations
wind turbine wakes
stream energy
turbulence
farm
cfd
Science & Technology - Other Topics
Energy & Fuels
Large eddy simulations

Publication and Content Type

ref (subject category)
art (subject category)

Find in a library

To the university's database

  • 1 of 1
  • Previous record
  • Next record
  •    To hitlist

Search outside SwePub

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Close

Copy and save the link in order to return to this view