SwePub
Sök i LIBRIS databas

  Extended search

onr:"swepub:oai:gup.ub.gu.se/314250"
 

Search: onr:"swepub:oai:gup.ub.gu.se/314250" > Low Phase-Rank Appr...

  • 1 of 1
  • Previous record
  • Next record
  •    To hitlist

Low Phase-Rank Approximation

Zhao, D. (author)
Hong Kong University of Science and Technology,Tongji University
Ringh, Axel (author)
Gothenburg University,Göteborgs universitet,Institutionen för matematiska vetenskaper,Department of Mathematical Sciences,Hong Kong University of Science and Technology,Chalmers tekniska högskola,Chalmers University of Technology
Qiu, L. (author)
Hong Kong University of Science and Technology
show more...
Khong, S. Z. (author)
show less...
 (creator_code:org_t)
Elsevier BV, 2022
2022
English.
In: Linear Algebra and Its Applications. - : Elsevier BV. - 0024-3795. ; 639, s. 177-204
  • Journal article (peer-reviewed)
Abstract Subject headings
Close  
  • In this paper, we propose and solve low phase-rank approximation problems, which serve as a counterpart to the well-known low-rank approximation problem and the Schmidt-Mirsky theorem. It is well known that a nonzero complex number can be specified by its gain and phase, and while it is generally accepted that the gains of a matrix may be defined by its singular values, there is no widely accepted definition for its phases. In this work, we consider sectorial matrices, whose numerical ranges do not contain the origin, and adopt the canonical angles of such matrices as their phases. Similarly to the rank of a matrix being defined as the number of its nonzero singular values, we define the phase-rank of a sectorial matrix as the number of its nonzero phases. While a low-rank approximation problem is associated with the matrix arithmetic mean, it turns out that a natural parallel for the low phase-rank approximation problem is to use the matrix geometric mean to measure the approximation error. Importantly, we derive a majorization inequality between the phases of the geometric mean and the arithmetic mean of the phases, similarly to the Ky-Fan inequality for eigenvalues of Hermitian matrices. A characterization of the solutions to the proposed problem, with the same flavor as the Schmidt-Mirsky theorem, is then obtained in the case where both the objective matrix and the approximant are restricted to be positive-imaginary. In addition, we provide an alternative formulation of the low phase-rank approximation problem using geodesic distances between sectorial matrices. The two formulations give rise to the exact same set of solutions when the involved matrices are additionally assumed to be unitary. © 2022 Elsevier Inc.

Subject headings

NATURVETENSKAP  -- Matematik (hsv//swe)
NATURAL SCIENCES  -- Mathematics (hsv//eng)
NATURVETENSKAP  -- Matematik -- Beräkningsmatematik (hsv//swe)
NATURAL SCIENCES  -- Mathematics -- Computational Mathematics (hsv//eng)
NATURVETENSKAP  -- Matematik -- Diskret matematik (hsv//swe)
NATURAL SCIENCES  -- Mathematics -- Discrete Mathematics (hsv//eng)
NATURVETENSKAP  -- Matematik -- Matematisk analys (hsv//swe)
NATURAL SCIENCES  -- Mathematics -- Mathematical Analysis (hsv//eng)

Keyword

Arithmetic-geometric mean inequality
Geodesic distance
Geometric mean
Low phase-rank approximation
Majorization
Matrix phase
Phase-rank
Approximation theory
Eigenvalues and eigenfunctions
Geodesy
Geometry
Approximation problems
Arithmetic-geometric mean inequalities
Geodesic distances
Low rank approximations
matrix
Matrix phasis
Matrix algebra
Phase-rank

Publication and Content Type

ref (subject category)
art (subject category)

Find in a library

To the university's database

  • 1 of 1
  • Previous record
  • Next record
  •    To hitlist

Search outside SwePub

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Close

Copy and save the link in order to return to this view