SwePub
Sök i LIBRIS databas

  Extended search

onr:"swepub:oai:gup.ub.gu.se/324555"
 

Search: onr:"swepub:oai:gup.ub.gu.se/324555" > Using Deep Learning...

  • 1 of 1
  • Previous record
  • Next record
  •    To hitlist

Using Deep Learning to Model the Groundwater Tracer Radon in Coastal Waters

McKenzie, Tristan (author)
Gothenburg University,Göteborgs universitet,Institutionen för marina vetenskaper,Department of marine sciences
Dulai, H. (author)
Lee, J. (author)
show more...
Dimova, N.T. (author)
Santos, Isaac R. (author)
Gothenburg University,Göteborgs universitet,Institutionen för marina vetenskaper,Department of marine sciences
Zhang, B. (author)
Burnett, W. (author)
show less...
 (creator_code:org_t)
2023
2023
English.
In: Water Resources Research. - 0043-1397 .- 1944-7973. ; 59:3
  • Journal article (peer-reviewed)
Abstract Subject headings
Close  
  • Submarine groundwater discharge (SGD) is an important driver of coastal biogeochemical budgets worldwide. Radon (222Rn) has been widely used as a natural geochemical tracer to quantify SGD, but field measurements are time consuming and costly. Here, we use deep learning to predict coastal seawater radon in SGD-impacted regions. We hypothesize that deep learning could resolve radon trends and enable preliminary insights with limited field observations of groundwater tracers. Two deep learning models were trained on global coastal seawater radon observations (n = 39,238) with widely available inputs (e.g., salinity, temperature, water depth). The first model used a one-dimensional convolutional neural network (1D-CNN-RNN) framework for site-specific gap filling and producing short-term future predictions. A second model applied a fully connected neural network (FCNN) framework to predict radon across geographically and hydrologically diverse settings. Both models can predict observed radon concentrations with r2 > 0.76. Specifically, the FCNN model offers a compelling development because synthetic radon tracer data sets can be obtained using only basic water quality and meteorological parameters. This opens opportunities to attain radon data from regions with large data gaps, such as the Global South and other remote locations, allowing for insights that can be used to predict SGD and plan field experiments. Overall, we demonstrate how field-based measurements combined with big-data approaches such as deep learning can be utilized to assess radon and potentially SGD beyond local scales.

Subject headings

NATURVETENSKAP  -- Geovetenskap och miljövetenskap -- Oceanografi, hydrologi och vattenresurser (hsv//swe)
NATURAL SCIENCES  -- Earth and Related Environmental Sciences -- Oceanography, Hydrology and Water Resources (hsv//eng)

Publication and Content Type

ref (subject category)
art (subject category)

Find in a library

To the university's database

  • 1 of 1
  • Previous record
  • Next record
  •    To hitlist

Search outside SwePub

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Close

Copy and save the link in order to return to this view