SwePub
Sök i LIBRIS databas

  Extended search

onr:"swepub:oai:gup.ub.gu.se/328568"
 

Search: onr:"swepub:oai:gup.ub.gu.se/328568" > Weakly supervised d...

  • 1 of 1
  • Previous record
  • Next record
  •    To hitlist

Weakly supervised detection and classification of basal cell carcinoma using graph-transformer on whole slide images

Yacob, F. (author)
Siarov, Jan, 1984 (author)
Gothenburg University,Göteborgs universitet,Institutionen för biomedicin, avdelningen för laboratoriemedicin,Department of Laboratory Medicine
Villiamsson, Kajsa, 1989 (author)
Gothenburg University,Göteborgs universitet,Institutionen för biomedicin, avdelningen för laboratoriemedicin,Department of Laboratory Medicine
show more...
Suvilehto, J. T. (author)
Sjoblom, L. (author)
Kjellberg, M. (author)
Neittaanmäki, Noora (author)
Gothenburg University,Göteborgs universitet,Institutionen för biomedicin, avdelningen för laboratoriemedicin,Department of Laboratory Medicine
show less...
 (creator_code:org_t)
2023
2023
English.
In: Scientific Reports. - 2045-2322. ; 13:1
  • Journal article (peer-reviewed)
Abstract Subject headings
Close  
  • The high incidence rates of basal cell carcinoma (BCC) cause a significant burden at pathology laboratories. The standard diagnostic process is time-consuming and prone to inter-pathologist variability. Despite the application of deep learning approaches in grading of other cancer types, there is limited literature on the application of vision transformers to BCC on whole slide images (WSIs). A total of 1832 WSIs from 479 BCCs, divided into training and validation (1435 WSIs from 369 BCCs) and testing (397 WSIs from 110 BCCs) sets, were weakly annotated into four aggressivity subtypes. We used a combination of a graph neural network and vision transformer to (1) detect the presence of tumor (two classes), (2) classify the tumor into low and high-risk subtypes (three classes), and (3) classify four aggressivity subtypes (five classes). Using an ensemble model comprised of the models from cross-validation, accuracies of 93.5%, 86.4%, and 72% were achieved on two, three, and five class classifications, respectively. These results show high accuracy in both tumor detection and grading of BCCs. The use of automated WSI analysis could increase workflow efficiency.

Subject headings

MEDICIN OCH HÄLSOVETENSKAP  -- Medicinsk bioteknologi -- Biomedicinsk laboratorievetenskap/teknologi (hsv//swe)
MEDICAL AND HEALTH SCIENCES  -- Medical Biotechnology -- Biomedical Laboratory Science/Technology (hsv//eng)

Publication and Content Type

ref (subject category)
art (subject category)

Find in a library

To the university's database

  • 1 of 1
  • Previous record
  • Next record
  •    To hitlist

Search outside SwePub

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Close

Copy and save the link in order to return to this view