SwePub
Sök i LIBRIS databas

  Extended search

onr:"swepub:oai:gup.ub.gu.se/54292"
 

Search: onr:"swepub:oai:gup.ub.gu.se/54292" > Biomechanical Measu...

  • 1 of 1
  • Previous record
  • Next record
  •    To hitlist

Biomechanical Measurements of Calcium-Incorporated Oxidized Implants in Rabbit Bone: Effect of Calcium Surface Chemistry of a Novel Implant

Sul, Young-Taeg, 1960 (author)
Gothenburg University,Göteborgs universitet,Institutionen för de kirurgiska disciplinerna, Avdelningen för biomaterialvetenskap,Institute of Surgical Sciences, Department of Biomaterials
Byon, Eung-Sun Eung-Sun (author)
Jeong, Yongsoo Yongsoo (author)
 (creator_code:org_t)
2004
2004
English.
In: Clinical Implant Dentistry and Related Research. - 1523-0899. ; 6:2, s. 101-10
  • Journal article (peer-reviewed)
Abstract Subject headings
Close  
  • BACKGROUND: In oral implantology there has been a general trend away from machine-turned minimally rough and acid-etched and blasted implants toward intermediary roughened surfaces. Mechanical interlocking at micron resolution is claimed to be the dominant reason for the fixation of such implants in bone. However, clinical demands for stronger and faster bone bonding to the implant (eg, in immediately loaded and compromised bone cases) have motivated the development of novel surfaces capable of chemical bonding. PURPOSE: The purpose of the present study is to investigate bone tissue reactions to a newly developed calciumincorporated oxidized implant. The specific aim is to assess the effect of calcium surface chemistry on the bone response. MATERIALS AND METHODS: Calcium (Ca) ion-incorporated implants were prepared by micro arc oxidation methods. Surface oxide properties were characterized by using various surface analytic techniques involving scanning electron microscopy, x-ray diffractometry, x-ray photoelectron spectroscopy, and optical interferometry. Twenty screw-shaped commercially pure (CP) titanium implants (10 turned implants [controls] and 10 Ca-incorporated implants [tests]) were inserted in the femoral condyles of 10 New Zealand White rabbits. RESULTS: After a healing period of 6 weeks, resonance frequency analyses and removal torque measurements of the Ca-incorporated oxidized implants demonstrated statistically significant improvements of implant integration with bone in comparison to machine-turned control implants (p = 0.013 and p = 0.005, respectively). CONCLUSIONS: The Ca-reinforced surface chemistry of the oxidized implants significantly improved bone responses in a rabbit model. The present study suggests that biochemical bonding at the bone-implant interface, in combination with mechanical interlocking, may play a dominant role in the fixation of Ca-incorporated oxidized implants in bone. The observed rapid and strong integration of test Ca implants may have clinical implications for immediate or early loading and improved performance in compromised bone.

Subject headings

MEDICIN OCH HÄLSOVETENSKAP  -- Klinisk medicin -- Odontologi (hsv//swe)
MEDICAL AND HEALTH SCIENCES  -- Clinical Medicine -- Dentistry (hsv//eng)
TEKNIK OCH TEKNOLOGIER  -- Materialteknik -- Bearbetnings-, yt- och fogningsteknik (hsv//swe)
ENGINEERING AND TECHNOLOGY  -- Materials Engineering -- Manufacturing, Surface and Joining Technology (hsv//eng)

Keyword

Biochemical bonding
biomechanical test
bone response
calcium surface chemistry
oxidized titanium implant

Publication and Content Type

ref (subject category)
art (subject category)

Find in a library

To the university's database

  • 1 of 1
  • Previous record
  • Next record
  •    To hitlist

Find more in SwePub

By the author/editor
Sul, Young-Taeg, ...
Byon, Eung-Sun E ...
Jeong, Yongsoo Y ...
About the subject
MEDICAL AND HEALTH SCIENCES
MEDICAL AND HEAL ...
and Clinical Medicin ...
and Dentistry
ENGINEERING AND TECHNOLOGY
ENGINEERING AND ...
and Materials Engine ...
and Manufacturing Su ...
Articles in the publication
Clinical Implant ...
By the university
University of Gothenburg

Search outside SwePub

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Close

Copy and save the link in order to return to this view