SwePub
Sök i LIBRIS databas

  Extended search

onr:"swepub:oai:lup.lub.lu.se:01a5faa7-8366-4afc-8d50-0cb58bbb7946"
 

Search: onr:"swepub:oai:lup.lub.lu.se:01a5faa7-8366-4afc-8d50-0cb58bbb7946" > Comparison of end-p...

  • 1 of 1
  • Previous record
  • Next record
  •    To hitlist

Comparison of end-point continuum-solvation methods for the calculation of protein-ligand binding free energies.

Genheden, Samuel (author)
Lund University,Lunds universitet,Beräkningskemi,Enheten för fysikalisk och teoretisk kemi,Kemiska institutionen,Institutioner vid LTH,Lunds Tekniska Högskola,Computational Chemistry,Physical and theoretical chemistry,Department of Chemistry,Departments at LTH,Faculty of Engineering, LTH
Ryde, Ulf (author)
Lund University,Lunds universitet,Beräkningskemi,Enheten för fysikalisk och teoretisk kemi,Kemiska institutionen,Institutioner vid LTH,Lunds Tekniska Högskola,Computational Chemistry,Physical and theoretical chemistry,Department of Chemistry,Departments at LTH,Faculty of Engineering, LTH
 (creator_code:org_t)
2012-02-13
2012
English.
In: Proteins. - : Wiley. - 0887-3585. ; 80:5, s. 1326-1342
  • Journal article (peer-reviewed)
Abstract Subject headings
Close  
  • We have compared the predictions of ligand-binding affinities from several methods based on end-point molecular dynamics simulations and continuum solvation, i.e. methods related to MM/PBSA (molecular mechanics combined with Poisson-Boltzmann and surface area solvation). Two continuum-solvation models were considered, viz. the Poisson-Boltzmann (PB) and generalised Born (GB) approaches. The non-electrostatic energies were also obtained in two different ways, viz. either from the sum of the bonded, van der Waals, non-polar solvation energies, and entropy terms (as in MM/PBSA), or from the scaled protein-ligand van der Waals interaction energy (as in the linear interaction energy approach, LIE). Three different approaches to calculate electrostatic energies were tested, viz. the sum of electrostatic interaction energies and polar solvation energies, obtained either from a single simulation of the complex or from three independent simulations of the complex, the free protein, and the free ligand, or the linear-response approximation (LRA). Moreover, we investigated the effect of scaling the electrostatic interactions by an effective internal dielectric constant of the protein (ε(int) ). All these methods were tested on the binding of seven biotin analogues to avidin and nine 3-amidinobenzyl-1H-indole-2-carboxamide inhibitors to factor Xa. For avidin, the best results were obtained with a combination of the LIE non-electrostatic energies with the MM+GB electrostatic energies from a single simulation, using ε(int) = 4. For fXa, standard MM/GBSA, based on one simulation and using ε(int) = 4-10 gave the best result. The optimum internal dielectric constant seems to be slightly higher with PB than with GB solvation. Proteins 2012. © 2012 Wiley-Liss, Inc.

Subject headings

NATURVETENSKAP  -- Kemi -- Teoretisk kemi (hsv//swe)
NATURAL SCIENCES  -- Chemical Sciences -- Theoretical Chemistry (hsv//eng)

Publication and Content Type

art (subject category)
ref (subject category)

Find in a library

  • Proteins (Search for host publication in LIBRIS)

To the university's database

  • 1 of 1
  • Previous record
  • Next record
  •    To hitlist

Find more in SwePub

By the author/editor
Genheden, Samuel
Ryde, Ulf
About the subject
NATURAL SCIENCES
NATURAL SCIENCES
and Chemical Science ...
and Theoretical Chem ...
Articles in the publication
Proteins
By the university
Lund University

Search outside SwePub

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Close

Copy and save the link in order to return to this view