SwePub
Sök i LIBRIS databas

  Extended search

onr:"swepub:oai:lup.lub.lu.se:02e5d17f-c781-4030-bf1a-102e5fdae457"
 

Search: onr:"swepub:oai:lup.lub.lu.se:02e5d17f-c781-4030-bf1a-102e5fdae457" > Leaf metabolic and ...

  • 1 of 1
  • Previous record
  • Next record
  •    To hitlist

Leaf metabolic and morphological responses of dwarf willow (Salix herbacea) in the sub-arctic to the past 9000 years of global environmental change

Beerling, D. J. (author)
University of Sheffield
Rundgren, M. (author)
Lund University,Lunds universitet,Kvartärgeologi,Geologiska institutionen,Naturvetenskapliga fakulteten,Quaternary Sciences,Department of Geology,Faculty of Science
 (creator_code:org_t)
2001-12-25
2000
English 13 s.
In: New Phytologist. - : Wiley. - 0028-646X .- 1469-8137. ; 145:2, s. 257-269
  • Journal article (peer-reviewed)
Abstract Subject headings
Close  
  • Ice-core records of the concentration of atmospheric CO2 and its stable isotope ratio (δ13C(a)) have shown that the global C cycle has not remained in steady-state over the past 11000 yr, implying a possible change in vegetation activity over this period. Here we evaluated the ecophysiological responses of the dwarf willow (Salix herbacea) over the past 9000 yr by measuring the stable carbon isotope composition and stomatal characters of a unique, well dated, high-latitude (68°N) sub-fossil leaf sequence. After correction for corresponding changes in δ13C(a), 9000-yr record of variations in the ratio of intercellular (c(j)) to atmospheric (c(a)) CO2 concentration was established. Intercellular: atmospheric CO2 concentration ratios provide a time-integrated indicator of the set-point of leaf gas exchange, and the historical variations revealed in this record have been interpreted as an impact of environmental changes on leaf gas exchange. The sequence shows a progressive fall in c(i)/c(a) 9000-3000 yr BP as well as the climatic effects of the Medieval Warm Period, the Little Ice Age and the post-industrial CO2 rise. Leaf stomatal index (proportion of epidermal cells as stomata), but not stomatal density, was significantly (P <0.01) correlated with Holocene atmospheric CO2 variations. A process-based interpretation of the changes in c(i)/c(a) was made using two different coupled photosynthesis-stomatal conductance models. Calculated in this way, S. herbacea photosynthetic rates were relatively stable throughout the Holocene whilst stomatal conductance progressively declined. Both, however, showed the marked effects of the Medieval Warm Period and the Little Ice Age. Overall, the results demonstrate that S. herbacea leaf metabolism, like the global C cycle, has not remained in steady state during the Holocene but has responded to changes in atmospheric CO2 concentration and short-term climatic oscillations.

Subject headings

NATURVETENSKAP  -- Geovetenskap och miljövetenskap -- Klimatforskning (hsv//swe)
NATURAL SCIENCES  -- Earth and Related Environmental Sciences -- Climate Research (hsv//eng)
NATURVETENSKAP  -- Geovetenskap och miljövetenskap -- Miljövetenskap (hsv//swe)
NATURAL SCIENCES  -- Earth and Related Environmental Sciences -- Environmental Sciences (hsv//eng)
NATURVETENSKAP  -- Geovetenskap och miljövetenskap -- Geologi (hsv//swe)
NATURAL SCIENCES  -- Earth and Related Environmental Sciences -- Geology (hsv//eng)

Keyword

Atmospheric CO
Leaf gas exchange
Modelling
Stable carbon isotopes
Stomata
Sub-fossil leaves

Publication and Content Type

art (subject category)
ref (subject category)

Find in a library

To the university's database

  • 1 of 1
  • Previous record
  • Next record
  •    To hitlist

Find more in SwePub

By the author/editor
Beerling, D. J.
Rundgren, M.
About the subject
NATURAL SCIENCES
NATURAL SCIENCES
and Earth and Relate ...
and Climate Research
NATURAL SCIENCES
NATURAL SCIENCES
and Earth and Relate ...
and Environmental Sc ...
NATURAL SCIENCES
NATURAL SCIENCES
and Earth and Relate ...
and Geology
Articles in the publication
New Phytologist
By the university
Lund University

Search outside SwePub

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Close

Copy and save the link in order to return to this view