SwePub
Sök i LIBRIS databas

  Extended search

onr:"swepub:oai:lup.lub.lu.se:11fdf28f-113b-4bee-90bf-2723f9f90825"
 

Search: onr:"swepub:oai:lup.lub.lu.se:11fdf28f-113b-4bee-90bf-2723f9f90825" > Acetonitrile and Pr...

  • 1 of 1
  • Previous record
  • Next record
  •    To hitlist

Acetonitrile and Propionitrile Exchange at Palladium(II) and Platinum(II)

Wendt, Ola (author)
Lund University,Lunds universitet,Centrum för analys och syntes,Kemiska institutionen,Institutioner vid LTH,Lunds Tekniska Högskola,Centre for Analysis and Synthesis,Department of Chemistry,Departments at LTH,Faculty of Engineering, LTH
N. F., Kaiser (author)
Lund University
Elding, Lars Ivar (author)
Lund University,Lunds universitet,Centrum för analys och syntes,Kemiska institutionen,Institutioner vid LTH,Lunds Tekniska Högskola,Centre for Analysis and Synthesis,Department of Chemistry,Departments at LTH,Faculty of Engineering, LTH
 (creator_code:org_t)
1997
1997
English 5 s.
In: Journal of the Chemical Society. Dalton Transactions. - 1472-7773. ; 1997:24, s. 4733-4737
  • Journal article (peer-reviewed)
Abstract Subject headings
Close  
  • Ligand exchange at square-planar [Pd(MeCN)4]2+ and [Pd(EtCN)4]2+ has been studied by 1H NMR line broadening and at [Pt(MeCN)4]2+ and [Pt(EtCN)4]2+ by isotopic labelling using 1H NMR spectroscopy in deuteriated nitromethane. Exchange takes place via two-term rate laws Rex/4 = (k1 + k2[RCN])cM with well defined k1 paths. Rate constants per co-ordination site k1298/s–1, k2298/kg mol–1 s–1 are 6.9 ± 1.6, 34 ± 3; 0.59 ± 0.12, 34 ± 3; 10.7 ± 1.8, 35 ± 4; (5.1 ± 2.3) × 10–6, (2.8 ± 0.2) × 10–5 and (5.5 ± 1.0) × 10–6, (3.3 ± 0.2) × 10–5 for [Pd(MeCN)4][CF3SO3]2, [Pd(MeCN)4][BF4]2, [Pd(EtCN)4][CF3SO3]2, [Pt(MeCN)4][CF3SO3]2 and [Pt(EtCN)4][CF3SO3]2, respectively. For [Pd(MeCN)4]2+ the k1 path is much larger for triflate than for tetrafluoroborate as counter ion. Changing the tetrafluoroborate concentration has no effect on the exchange rate of acetonitrile at [Pd(MeCN)4]2+. In this case the k1 path is ascribed to an attack by solvent at the metal centre. For triflate saturation kinetics is observed. This can be rationalized in terms of ion-pair formation followed by reversible intramolecular exchange of nitrile for triflate within the ion pair, with an equilibrium constant Kip300 = 8 ± 2 kg mol–1 and a rate constant k300 = 12.5 ± 1.3 s–1. All activation entropies are negative, indicating associative activation. A new, simple one-step synthesis of the substrate complexes as their triflate salts, using [M(acac)2] (acac = acetylacetonate) as starting material, and of [Pd(MeCN)4][BF4]2 using palladium(II) acetate, is described.
  • Ligand exchange at square-planar [Pd(MeCN)4]2+ and [Pd(EtCN)4]2+ has been studied by 1H NMR line broadening and at [Pt(MeCN)4]2+ and [Pt(EtCN)4]2+ by isotopic labelling using 1H NMR spectroscopy in deuteriated nitromethane. Exchange takes place via two-term rate laws Rex/4 = (k1 + k2[RCN])cM with well defined k1 paths. Rate constants per co-ordination site k1298/s–1, k2298/kg mol–1 s–1 are 6.9 ± 1.6, 34 ± 3; 0.59 ± 0.12, 34 ± 3; 10.7 ± 1.8, 35 ± 4; (5.1 ± 2.3) × 10–6, (2.8 ± 0.2) × 10–5 and (5.5 ± 1.0) × 10–6, (3.3 ± 0.2) × 10–5 for [Pd(MeCN)4][CF3SO3]2, [Pd(MeCN)4][BF4]2, [Pd(EtCN)4][CF3SO3]2, [Pt(MeCN)4][CF3SO3]2 and [Pt(EtCN)4][CF3SO3]2, respectively. For [Pd(MeCN)4]2+ the k1 path is much larger for triflate than for tetrafluoroborate as counter ion. Changing the tetrafluoroborate concentration has no effect on the exchange rate of acetonitrile at [Pd(MeCN)4]2+. In this case the k1 path is ascribed to an attack by solvent at the metal centre. For triflate saturation kinetics is observed. This can be rationalized in terms of ion-pair formation followed by reversible intramolecular exchange of nitrile for triflate within the ion pair, with an equilibrium constant Kip300 = 8 ± 2 kg mol–1 and a rate constant k300 = 12.5 ± 1.3 s–1. All activation entropies are negative, indicating associative activation. A new, simple one-step synthesis of the substrate complexes as their triflate salts, using [M(acac)2] (acac = acetylacetonate) as starting material, and of [Pd(MeCN)4][BF4]2 using palladium(II) acetate, is described.

Subject headings

NATURVETENSKAP  -- Kemi -- Oorganisk kemi (hsv//swe)
NATURAL SCIENCES  -- Chemical Sciences -- Inorganic Chemistry (hsv//eng)

Keyword

Palladium(II)
Platinum(II)
Acetonitrile
Propionitrile
Ligand exchange
Proton NMR line broadening
Reaction Mechanism
Actvation entropy
Triflate salt
Palladium(II)
Platinum(II)
Acetonitrile
Propionitrile
Ligand exchange
Kinetics
Reaction mechanism
NMR spectroscopy
Triflate salts

Publication and Content Type

art (subject category)
ref (subject category)

Find in a library

To the university's database

  • 1 of 1
  • Previous record
  • Next record
  •    To hitlist

Find more in SwePub

By the author/editor
Wendt, Ola
N. F., Kaiser
Elding, Lars Iva ...
About the subject
NATURAL SCIENCES
NATURAL SCIENCES
and Chemical Science ...
and Inorganic Chemis ...
Articles in the publication
Journal of the C ...
By the university
Lund University

Search outside SwePub

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Close

Copy and save the link in order to return to this view