SwePub
Sök i LIBRIS databas

  Extended search

onr:"swepub:oai:lup.lub.lu.se:39b26c8d-5a85-47c9-91c0-9e5782b85e0f"
 

Search: onr:"swepub:oai:lup.lub.lu.se:39b26c8d-5a85-47c9-91c0-9e5782b85e0f" > Electricity-based p...

  • 1 of 1
  • Previous record
  • Next record
  •    To hitlist

Electricity-based plastics and their potential demand for electricity and carbon dioxide

Palm, Ellen (author)
Lund University,Lunds universitet,Miljö- och energisystem,Institutionen för teknik och samhälle,Institutioner vid LTH,Lunds Tekniska Högskola,Environmental and Energy Systems Studies,Department of Technology and Society,Departments at LTH,Faculty of Engineering, LTH
Nilsson, Lars J (author)
Lund University,Lunds universitet,Miljö- och energisystem,Institutionen för teknik och samhälle,Institutioner vid LTH,Lunds Tekniska Högskola,Environmental and Energy Systems Studies,Department of Technology and Society,Departments at LTH,Faculty of Engineering, LTH
Åhman, Max (author)
Lund University,Lunds universitet,Miljö- och energisystem,Institutionen för teknik och samhälle,Institutioner vid LTH,Lunds Tekniska Högskola,Environmental and Energy Systems Studies,Department of Technology and Society,Departments at LTH,Faculty of Engineering, LTH
 (creator_code:org_t)
Elsevier BV, 2016
2016
English 8 s.
In: Journal of Cleaner Production. - : Elsevier BV. - 0959-6526. ; 129, s. 548-555
  • Journal article (peer-reviewed)
Abstract Subject headings
Close  
  • In a future fossil-free circular economy, the petroleum-based plastics industry must be converted to non-fossil feedstock. A known alternative is bio-based plastics, but a relatively unexplored option is deriving the key plastic building blocks, hydrogen and carbon, from electricity through electrolytic processes combined with carbon capture and utilization technology. In this paper the future demand for electricity and carbon dioxide is calculated under the assumption that all plastic production is electricity-based in the EU by 2050. The two most important input chemicals are ethylene and propylene and the key finding of this paper is that the electricity demand to produce these are estimated to 20 MWh/ton ethylene and 38 MWh/ton propylene, and that they both could require about 3 tons of carbon dioxide/ton product. With constant production levels, this implies an annual demand of about 800 TWh of electricity and 90 Mton of carbon dioxide by 2050 in the EU. If scaled to the total production of plastics, including all input hydrocarbons in the EU, the annual demand is estimated to 1600 TWh of electricity and 180 Mton of carbon dioxide. This suggests that a complete shift to electricity-based plastics is possible from a resource and technology point of view, but production costs may be 2 to 3 times higher than today. However, the long time frame of this paper creates uncertainties regarding the results and how technical, economic and social development may influence them. The conclusion of this paper is that electricity-based plastics, integrated with bio-based production, can be an important option in 2050 since biomass resources are scarce, but electricity from renewable sources is abundant.

Subject headings

TEKNIK OCH TEKNOLOGIER  -- Naturresursteknik -- Energisystem (hsv//swe)
ENGINEERING AND TECHNOLOGY  -- Environmental Engineering -- Energy Systems (hsv//eng)

Keyword

CCU
Electrification
Ethylene
Fossil-free plastics
Propylene

Publication and Content Type

art (subject category)
ref (subject category)

Find in a library

To the university's database

  • 1 of 1
  • Previous record
  • Next record
  •    To hitlist

Find more in SwePub

By the author/editor
Palm, Ellen
Nilsson, Lars J
Åhman, Max
About the subject
ENGINEERING AND TECHNOLOGY
ENGINEERING AND ...
and Environmental En ...
and Energy Systems
Articles in the publication
Journal of Clean ...
By the university
Lund University

Search outside SwePub

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Close

Copy and save the link in order to return to this view