SwePub
Sök i LIBRIS databas

  Extended search

onr:"swepub:oai:lup.lub.lu.se:477b6933-ac19-4b67-83c3-ed7989d7eb96"
 

Search: onr:"swepub:oai:lup.lub.lu.se:477b6933-ac19-4b67-83c3-ed7989d7eb96" > Dose-length-product...

  • 1 of 1
  • Previous record
  • Next record
  •    To hitlist

Dose-length-product determination on cone beam computed tomography through experimental measurements and dose-area-product conversion

Fransson, Veronica (author)
Lund University,Lunds universitet,Medicinsk strålningsfysik, Malmö,Forskargrupper vid Lunds universitet,Medical Radiation Physics, Malmö,Lund University Research Groups,Skåne University Hospital
Tingberg, Anders (author)
Lund University,Lunds universitet,Medicinsk strålningsfysik, Malmö,Forskargrupper vid Lunds universitet,LUCC: Lunds universitets cancercentrum,Övriga starka forskningsmiljöer,Medical Radiation Physics, Malmö,Lund University Research Groups,LUCC: Lund University Cancer Centre,Other Strong Research Environments,Skåne University Hospital
Bosmans, Hilde (editor)
show more...
Zhao, Wei (editor)
Yu, Lifeng (editor)
show less...
 (creator_code:org_t)
SPIE, 2021
2021
English.
In: Medical Imaging 2021 : Physics of Medical Imaging - Physics of Medical Imaging. - : SPIE. - 1605-7422. - 9781510640207 ; 11595
  • Conference paper (peer-reviewed)
Abstract Subject headings
Close  
  • The dosimetry of cone beam computed tomography (CBCT) is not fully elaborated yet, and some of these systems presents dose-area-product (DAP) values after an examination rather than, as in the case of traditional CT, the doselength- product (DLP). The purpose of this study was to provide a reproducible and straight-forward method for DLP measurements on CBCT, as well as to validate a tool for estimating DLP for a CBCT system in terms of accuracy. A prototype conversion tool for estimating DLP, using the DAP value, was provided by the vendor of a CBCT system which currently display only DAP. The DAP to DLP conversion tool was validated using five protocols for extremity imaging. DLP was measured using a 30 cm ionization chamber and 30 cm long cylindrical PMMA-phantom. DLP, the integrated absorbed dose within the ionization chamber, was measured through central and peripheral measurements in the phantom in order to calculate the weighted DLP, DLPW,CBCT. Comparisons between DLPW,CBCT and estimated DLP, showed that the conversion tool was accurate within 10%, with a mean average error of 6.1% for all measured protocols. The variation between repeated measurements was small, making the method highly reproducible. In conclusion, in this study a simple method for determining DLP on CBCT was presented, and it was validated that the conversion tool can present the delivered dose in terms of DLP with high accuracy. The measured DLP, as well as the DLP estimated by the conversion tool, is suitable for quality control and relative dose comparisons between protocols, but its’ relation to the DLP of CT systems should be investigated further in order to relate to patient dose.
  • The dosimetry of cone beam computed tomography (CBCT) is not fully elaborated yet, and some of these systems presents dose-area-product (DAP) values after an examination rather than, as in the case of traditional CT, the doselength- product (DLP). The purpose of this study was to provide a reproducible and straight-forward method for DLP measurements on CBCT, as well as to validate a tool for estimating DLP for a CBCT system in terms of accuracy. A prototype conversion tool for estimating DLP, using the DAP value, was provided by the vendor of a CBCT system which currently display only DAP. The DAP to DLP conversion tool was validated using five protocols for extremity imaging. DLP was measured using a 30 cm ionization chamber and 30 cm long cylindrical PMMA-phantom. DLP, the integrated absorbed dose within the ionization chamber, was measured through central and peripheral measurements in the phantom in order to calculate the weighted DLP, DLPW,CBCT. Comparisons between DLPW,CBCT and estimated DLP, showed that the conversion tool was accurate within 10%, with a mean average error of 6.1% for all measured protocols. The variation between repeated measurements was small, making the method highly reproducible. In conclusion, in this study a simple method for determining DLP on CBCT was presented, and it was validated that the conversion tool can present the delivered dose in terms of DLP with high accuracy. The measured DLP, as well as the DLP estimated by the conversion tool, is suitable for quality control and relative dose comparisons between protocols, but its’ relation to the DLP of CT systems should be investigated further in order to relate to patient dose.

Subject headings

MEDICIN OCH HÄLSOVETENSKAP  -- Klinisk medicin -- Radiologi och bildbehandling (hsv//swe)
MEDICAL AND HEALTH SCIENCES  -- Clinical Medicine -- Radiology, Nuclear Medicine and Medical Imaging (hsv//eng)

Publication and Content Type

kon (subject category)
ref (subject category)

Find in a library

To the university's database

  • 1 of 1
  • Previous record
  • Next record
  •    To hitlist

Find more in SwePub

By the author/editor
Fransson, Veroni ...
Tingberg, Anders
Bosmans, Hilde
Zhao, Wei
Yu, Lifeng
About the subject
MEDICAL AND HEALTH SCIENCES
MEDICAL AND HEAL ...
and Clinical Medicin ...
and Radiology Nuclea ...
Articles in the publication
Medical Imaging ...
By the university
Lund University

Search outside SwePub

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Close

Copy and save the link in order to return to this view