SwePub
Sök i LIBRIS databas

  Extended search

onr:"swepub:oai:lup.lub.lu.se:62ced885-27b5-4236-b0c9-dea44caab57c"
 

Search: onr:"swepub:oai:lup.lub.lu.se:62ced885-27b5-4236-b0c9-dea44caab57c" > Apparent latent hea...

  • 1 of 1
  • Previous record
  • Next record
  •    To hitlist

Apparent latent heat of evaporation from clothing: attenuation and “heat pipe” effects

Havenith, George (author)
Richards, Mark (author)
Wang, Xiaoxin (author)
show more...
Bröde, Peter (author)
Candas, Victor (author)
den Hartog, Emiel (author)
Holmér, Ingvar (author)
Lund University,Lunds universitet,Ergonomi och aerosolteknologi,Institutionen för designvetenskaper,Institutioner vid LTH,Lunds Tekniska Högskola,Ergonomics and Aerosol Technology,Department of Design Sciences,Departments at LTH,Faculty of Engineering, LTH
Kuklane, Kalev (author)
Lund University,Lunds universitet,Ergonomi och aerosolteknologi,Institutionen för designvetenskaper,Institutioner vid LTH,Lunds Tekniska Högskola,Ergonomics and Aerosol Technology,Department of Design Sciences,Departments at LTH,Faculty of Engineering, LTH
Meinander, Harriet (author)
Nocker, Wolfgang (author)
show less...
 (creator_code:org_t)
American Physiological Society, 2008
2008
English.
In: Journal of Applied Physiology. - : American Physiological Society. - 1522-1601 .- 8750-7587. ; 104:1, s. 142-149
  • Journal article (peer-reviewed)
Abstract Subject headings
Close  
  • Investigating claims that a clothed person’s mass loss does not always represent their evaporative heat loss (EVAP), a thermal manikin study was performed measuring heat balance components in more detail than human studies would permit. Using clothing with different levels of vapor permeability and measuring heat losses from skin controlled at 34°C in ambient temperatures of 10, 20, and 34°C with constant vapor pressure (1 kPa), additional heat losses from wet skin compared with dry skin were analyzed. EVAP based on mass loss (Emass) measurement and direct measurement of the extra heat loss by the manikin due to wet skin (Eapp) were compared. A clear discrepancy was observed. Emass overestimated Eapp in warm environments, and both under and overestimations were observed in cool environments, depending on the clothing vapor permeability. At 34°C, apparent latent heat ((lambda)app) of pure evaporative cooling was lower than the physical value ((lambda); 2,430 J/g) and reduced with increasing vapor resistance up to 45%. At lower temperatures, (lambda)app increases due to additional skin heat loss via evaporation of moisture that condenses inside the clothing, analogous to a heat pipe. For impermeable clothing, (lambda)app even exceeds (lambda) by four times that value at 10°C. These findings demonstrate that the traditional way of calculating evaporative heat loss of a clothed person can lead to substantial errors, especially for clothing with low permeability, which can be positive or negative, depending on the climate and clothing type. The model presented explains human subject data on EVAP that previously seemed contradictive.

Subject headings

MEDICIN OCH HÄLSOVETENSKAP  -- Medicinska och farmaceutiska grundvetenskaper -- Fysiologi (hsv//swe)
MEDICAL AND HEALTH SCIENCES  -- Basic Medicine -- Physiology (hsv//eng)

Keyword

heat balance
evaporative cooling efficiency
condensation
sweat evaporation
protective clothing

Publication and Content Type

art (subject category)
ref (subject category)

Find in a library

To the university's database

  • 1 of 1
  • Previous record
  • Next record
  •    To hitlist

Search outside SwePub

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Close

Copy and save the link in order to return to this view