SwePub
Sök i LIBRIS databas

  Extended search

onr:"swepub:oai:lup.lub.lu.se:720c842d-eef4-4fba-9755-425a9309f90c"
 

Search: onr:"swepub:oai:lup.lub.lu.se:720c842d-eef4-4fba-9755-425a9309f90c" > A novel hybrid drag...

  • 1 of 1
  • Previous record
  • Next record
  •    To hitlist

A novel hybrid dragonfly optimization algorithm for agricultural drought prediction

Aghelpour, Pouya (author)
Bu-Ali Sina University
Mohammadi, Babak (author)
Lund University,Lunds universitet,Institutionen för naturgeografi och ekosystemvetenskap,Naturvetenskapliga fakulteten,Dept of Physical Geography and Ecosystem Science,Faculty of Science
Mehdizadeh, Saeid (author)
Urmia University
show more...
Bahrami-Pichaghchi, Hadigheh (author)
Sari Agricultural Sciences and Natural Resources University
Duan, Zheng (author)
Lund University,Lunds universitet,BECC: Biodiversity and Ecosystem services in a Changing Climate,Centrum för miljö- och klimatvetenskap (CEC),Naturvetenskapliga fakulteten,Institutionen för naturgeografi och ekosystemvetenskap,Centre for Environmental and Climate Science (CEC),Faculty of Science,Dept of Physical Geography and Ecosystem Science
show less...
 (creator_code:org_t)
2021-04-07
2021
English.
In: Stochastic Environmental Research and Risk Assessment. - : Springer Science and Business Media LLC. - 1436-3240 .- 1436-3259. ; 35, s. 2459-2477
  • Journal article (peer-reviewed)
Abstract Subject headings
Close  
  • Palmer Drought Severity Index (PDSI) is known as a robust agricultural drought index since it considers the water balance conditions in the soil. It has been widely used as a reference index for monitoring agricultural drought. In this study, the PDSI time series were calculated for nine synoptic stations to monitor agricultural drought in semi-arid region located at Zagros mountains of Iran. Autoregressive Moving Average (ARMA) was used as the stochastic model while Radial Basis Function Neural Network (RBFNN) and Support Vector Machine (SVM) were applied as Machine Learning (ML)-based techniques. According to the time series analysis of PDSI, for the driest months the most PDSI drought events are normal drought and mild drought conditions. As an innovation, Dragonfly Algorithm (DA) was used in this study to optimize the SVM’s parameters, called as the hybrid SVM-DA model. It is worthy to mention that the hybrid SVM-DA is developed as a meta-innovative model for the first time in hydrological studies. The novel hybrid SVM-DA paradigm could improve the SVM’s accuracy up to 29% in predicting PDSI and therefore was found as the superior model. The best statistics for this model were obtained as Root Mean Squared Error (RMSE) = 0.817, Normalized RMSE (NRMSE) = 0.097, Wilmott Index (WI) = 0.940, and R = 0.889. The Mean Absolute Error values of the PDSI predictions via the novel SVM-DA model were under 0.6 for incipient drought, under 0.7 for mild and moderate droughts. In general, the error values in severe and extreme droughts were more than the other classes; however, the hybrid SVM-DA was the best-performing model in most of the cases.

Subject headings

NATURVETENSKAP  -- Geovetenskap och miljövetenskap -- Oceanografi, hydrologi och vattenresurser (hsv//swe)
NATURAL SCIENCES  -- Earth and Related Environmental Sciences -- Oceanography, Hydrology and Water Resources (hsv//eng)
NATURVETENSKAP  -- Geovetenskap och miljövetenskap -- Naturgeografi (hsv//swe)
NATURAL SCIENCES  -- Earth and Related Environmental Sciences -- Physical Geography (hsv//eng)
TEKNIK OCH TEKNOLOGIER  -- Samhällsbyggnadsteknik -- Vattenteknik (hsv//swe)
ENGINEERING AND TECHNOLOGY  -- Civil Engineering -- Water Engineering (hsv//eng)

Keyword

Hydrological modeling
Machine learning
Hydroinformatics
Drought
Stochastic model
Optimization Algorithms

Publication and Content Type

art (subject category)
ref (subject category)

Find in a library

To the university's database

  • 1 of 1
  • Previous record
  • Next record
  •    To hitlist

Search outside SwePub

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Close

Copy and save the link in order to return to this view