SwePub
Sök i LIBRIS databas

  Extended search

onr:"swepub:oai:lup.lub.lu.se:89b3e5bb-10ee-4dc5-9c71-83878942a854"
 

Search: onr:"swepub:oai:lup.lub.lu.se:89b3e5bb-10ee-4dc5-9c71-83878942a854" > Forming giant plane...

  • 1 of 1
  • Previous record
  • Next record
  •    To hitlist
  • Pan, MengruiZhejiang University (author)

Forming giant planets around late-M dwarfs : Pebble accretion and planet-planet collision

  • Article/chapterEnglish2024

Publisher, publication year, extent ...

  • 2024

Numbers

  • LIBRIS-ID:oai:lup.lub.lu.se:89b3e5bb-10ee-4dc5-9c71-83878942a854
  • https://lup.lub.lu.se/record/89b3e5bb-10ee-4dc5-9c71-83878942a854URI
  • https://doi.org/10.1051/0004-6361/202347664DOI

Supplementary language notes

  • Language:English
  • Summary in:English

Part of subdatabase

Classification

  • Subject category:art swepub-publicationtype
  • Subject category:ref swepub-contenttype

Notes

  • We propose a pebble-driven core accretion scenario to explain the formation of giant planets around the late-M dwarfs of M∗=0.1-0.2 M⊙. In order to explore the optimal disk conditions for giant planet, we performed N-body simulations to investigate the growth and dynamical evolution of both single and multiple protoplanets in the disks with both inner viscously heated and outer stellar irradiated regions. The initial masses of the protoplanets are either assumed to be equal to 0.01 M⊕ or calculated based on the formula derived from streaming instability simulations. Our findings indicate that massive planets are more likely to form in disks with longer lifetimes, higher solid masses, moderate to high levels of disk turbulence, and larger initial masses of protoplanets. In the single protoplanet growth cases, the highest planet core mass that can be reached is generally lower than the threshold necessary to trigger rapid gas accretion, which impedes the formation of giant planets. Nonetheless, in multi-protoplanet cases, the cores can exceed the pebble isolation mass barrier aided by frequent planet-planet collisions. This consequently speeds their gas accretion up and promotes giant planet formation, making the optimal parameter space to grow giant planets substantially wider. Taken together, our results suggest that even around very-low-mass stellar hosts, the giant planets with orbital periods of ≤100 days are still likely to form when lunar-mass protoplanets first emerge from planetesimal accretion and then grow rapidly by a combination of pebble accretion and planet-planet collisions in disks with a high supply of a pebble reservoir >50 M⊕ and a turbulent level of αt ~ 10-3-10-2.

Subject headings and genre

Added entries (persons, corporate bodies, meetings, titles ...)

  • Liu, BeibeiZhejiang University (author)
  • Johansen, AndersLund University,Lunds universitet,Astrofysik,Fysiska institutionen,Institutioner vid LTH,Lunds Tekniska Högskola,Astrophysics,Department of Physics,Departments at LTH,Faculty of Engineering, LTH,Centre for Star and Planet Formation (StarPlan),University of Copenhagen(Swepub:lu)astr-arj (author)
  • Ogihara, MasahiroShanghai Jiao Tong University (author)
  • Wang, SuPurple Mountain Observatory, Chinese Academy of Sciences (author)
  • Ji, JianghuiUniversity of Science and Technology of China,Purple Mountain Observatory, Chinese Academy of Sciences (author)
  • Wang, Sharon X.Tsinghua University (author)
  • Feng, FaboShanghai Jiao Tong University (author)
  • Ribas, IgnasiCSIC Institut de Ciènces de l’Espai (IEEC),CSIC Institute of Space Sciences (ICE) (author)
  • Zhejiang UniversityAstrofysik (creator_code:org_t)

Related titles

  • In:Astronomy and Astrophysics6820004-6361

Internet link

Find in a library

To the university's database

  • 1 of 1
  • Previous record
  • Next record
  •    To hitlist

Search outside SwePub

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Close

Copy and save the link in order to return to this view