SwePub
Sök i LIBRIS databas

  Extended search

onr:"swepub:oai:lup.lub.lu.se:98ade305-a704-419c-8d44-1c6f6e8be799"
 

Search: onr:"swepub:oai:lup.lub.lu.se:98ade305-a704-419c-8d44-1c6f6e8be799" > Science Goals and M...

  • 1 of 1
  • Previous record
  • Next record
  •    To hitlist

Science Goals and Mission Objectives for the Future Exploration of Ice Giants Systems : A Horizon 2061 Perspective

Blanc, Michel (author)
Aix-Marseille University,Université Paul Sabatier
Mandt, Kathleen (author)
Johns Hopkins University
Mousis, Olivier (author)
Aix-Marseille University
show more...
André, Nicolas (author)
Université Paul Sabatier
Bouquet, Alexis (author)
Aix-Marseille University
Charnoz, Sébastien (author)
Institut de Physique du Globe de Paris
Craft, Kathleen L. (author)
Johns Hopkins University
Deleuil, Magali (author)
Aix-Marseille University
Griton, Léa (author)
Université Paul Sabatier
Helled, Ravit (author)
University of Zurich
Hueso, Ricardo (author)
University of the Basque Country
Lamy, Laurent (author)
Paris Observatory,Aix-Marseille University
Louis, Corentin (author)
Université Paul Sabatier
Lunine, Jonathan (author)
Cornell University
Ronnet, Thomas (author)
Lund University,Lunds universitet,Astronomi - Genomgår omorganisation,Institutionen för astronomi och teoretisk fysik - Genomgår omorganisation,Naturvetenskapliga fakulteten,Lund Observatory - Undergoing reorganization,Department of Astronomy and Theoretical Physics - Undergoing reorganization,Faculty of Science
Schmidt, Juergen (author)
University of Oulu
Soderlund, Krista (author)
University of Texas at Austin
Turrini, Diego (author)
Institute for Space Astrophysics and Planetology
Turtle, Elizabeth (author)
Johns Hopkins University
Vernazza, Pierre (author)
Aix-Marseille University
Witasse, Olivier (author)
European Space Research and Technology Centre (ESA/ESTEC)
show less...
 (creator_code:org_t)
2020-12-21
2021
English.
In: Space Science Reviews. - : Springer Science and Business Media LLC. - 0038-6308 .- 1572-9672. ; 217:1
  • Research review (peer-reviewed)
Abstract Subject headings
Close  
  • The comparative study of planetary systems is a unique source of new scientific insight: following the six “key science questions” of the “Planetary Exploration, Horizon 2061” long-term foresight exercise, it can reveal to us the diversity of their objects (Question 1) and of their architectures (Question 2), help us better understand their origins (Question 3) and how they work (Question 4), find and characterize habitable worlds (Question 5), and ultimately, search for alien life (Question 6). But a huge “knowledge gap” exists which limits the applicability of this approach in the solar system itself: two of its secondary planetary systems, the ice giant systems of Uranus and Neptune, remain poorly explored. Starting from an analysis of our current limited knowledge of solar system ice giants and their systems in the light of these six key science questions, we show that a long-term plan for the space exploration of ice giants and their systems will greatly contribute to answer these questions. To do so, we identify the key measurements needed to address each of these questions, the destinations to choose (Uranus, Neptune, Triton or a subset of them), the combinations of space platform(s) and the types of flight sequences needed. We then examine the different launch windows available until 2061, using a Jupiter fly-by, to send a mission to Uranus or Neptune, and find that: (1) an optimized choice of platforms and flight sequences makes it possible to address a broad range of the key science questions with one mission at one of the planets. Combining an atmospheric entry probe with an orbiter tour starting on a high-inclination, low periapse orbit, followed by a sequence of lower inclination orbits (or the other way around) appears to be an optimal choice. (2) a combination of two missions to each of the ice giant systems, to be flown in parallel or in sequence, will address five out of the six key questions and establish the prerequisites to address the sixth one: searching for life at one of the most promising Ice Giant moons. (3) The 2032 Jupiter fly-by window, which offers a unique opportunity to implement this plan, should be considered in priority; if this window cannot be met, using the 2036 Jupiter fly-by window to send a mission to Uranus first, and then the 2045 window for a mission to Neptune, will allow one to achieve the same objectives; as a back-up option, one should consider an orbiter + probe mission to one of the planets and a close fly-by of the other planet to deliver a probe into its atmosphere, using the opportunity of a future mission on its way to Kuiper Belt Objects or the interstellar medium; (4) based on the examination of the habitability of the different moons by the first two missions, a third one can be properly designed to search for life at the most promising moon, likely Triton, or one of the active moons of Uranus. Thus, by 2061 the first two missions of this plan can be implemented and a third mission focusing on the search for life can be designed. Given that such a plan may be out of reach of a single national agency, international collaboration is the most promising way to implement it.

Subject headings

NATURVETENSKAP  -- Fysik -- Astronomi, astrofysik och kosmologi (hsv//swe)
NATURAL SCIENCES  -- Physical Sciences -- Astronomy, Astrophysics and Cosmology (hsv//eng)

Keyword

Astrobiology
Ice giants
Neptune
Origins
Planetary exploration
Planetary systems
Planets
Uranus

Publication and Content Type

for (subject category)
ref (subject category)

Find in a library

To the university's database

  • 1 of 1
  • Previous record
  • Next record
  •    To hitlist

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Close

Copy and save the link in order to return to this view