SwePub
Sök i LIBRIS databas

  Extended search

onr:"swepub:oai:lup.lub.lu.se:cc52cb8e-19d6-404b-8a95-99f4dc8e78cb"
 

Search: onr:"swepub:oai:lup.lub.lu.se:cc52cb8e-19d6-404b-8a95-99f4dc8e78cb" > A multi-center inte...

  • 1 of 1
  • Previous record
  • Next record
  •    To hitlist

A multi-center inter-manufacturer study of the temporal stability of phase-contrast velocity mapping background offset errors

Gatehouse, Peter D. (author)
Rolf, Marijn P. (author)
Markenroth Bloch, Karin (author)
Lund University,Lunds universitet,Klinisk fysiologi, Lund,Sektion V,Institutionen för kliniska vetenskaper, Lund,Medicinska fakulteten,Clinical Physiology (Lund),Section V,Department of Clinical Sciences, Lund,Faculty of Medicine
show more...
Graves, Martin J. (author)
Kilner, Philip J. (author)
Firmin, David N. (author)
Hofman, Mark B. M. (author)
show less...
 (creator_code:org_t)
2012
2012
English.
In: Journal of Cardiovascular Magnetic Resonance. - 1097-6647. ; 14:72
  • Journal article (peer-reviewed)
Abstract Subject headings
Close  
  • Background: Phase-contrast velocity images often contain a background or baseline offset error, which adds an unknown offset to the measured velocities. For accurate flow measurements, this offset must be shown negligible or corrected. Some correction techniques depend on replicating the clinical flow acquisition using a uniform stationary phantom, in order to measure the baseline offset at the region of interest and subtract it from the clinical study. Such techniques assume that the background offset is stable over the time of a patient scan, or even longer if the phantom scans are acquired later, or derived from pre-stored background correction images. There is no published evidence regarding temporal stability of the background offset. Methods: This study assessed the temporal stability of the background offset on 3 different manufacturers' scanners over 8 weeks, using a retrospectively-gated phase-contrast cine acquisition with fixed parameters and at a fixed location, repeated 5 times in rapid succession each week. A significant offset was defined as 0.6 cm/s within 50 mm of isocenter, based upon an accuracy of 10% in a typical cardiac shunt measurement. Results: Over the 5 repeated cine acquisitions, temporal drift in the baseline offset was insignificant on two machines (0.3 cm/s, 0.2 cm/s), and marginally insignificant on the third machine (0.5 cm/s) due to an apparent heating effect. Over a longer timescale of 8 weeks, insignificant drift (0.4 cm/s) occurred on one, with larger drifts (0.9 cm/s, 0.6 cm/s) on the other machines. Conclusions: During a typical patient study, background drift was insignificant. Extended high gradient power scanning with work requires care to avoid drift on some machines. Over the longer term of 8 weeks, significant drift is likely, preventing accurate correction by delayed phantom corrections or derivation from pre-stored background offset data.

Subject headings

MEDICIN OCH HÄLSOVETENSKAP  -- Klinisk medicin -- Kardiologi (hsv//swe)
MEDICAL AND HEALTH SCIENCES  -- Clinical Medicine -- Cardiac and Cardiovascular Systems (hsv//eng)

Keyword

Magnetic resonance imaging
Phase-contrast velocity mapping
Background
velocity offset error
Cardiac output
Shunt flow
Regurgitation

Publication and Content Type

art (subject category)
ref (subject category)

Find in a library

To the university's database

  • 1 of 1
  • Previous record
  • Next record
  •    To hitlist

Search outside SwePub

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Close

Copy and save the link in order to return to this view