SwePub
Sök i LIBRIS databas

  Extended search

onr:"swepub:oai:lup.lub.lu.se:d3eefccd-6e0e-4feb-b5c3-e4c14535da09"
 

Search: onr:"swepub:oai:lup.lub.lu.se:d3eefccd-6e0e-4feb-b5c3-e4c14535da09" > Mechanism and Rate ...

  • 1 of 1
  • Previous record
  • Next record
  •    To hitlist

Mechanism and Rate Constants of the CH3+ CH2CO Reaction : A Theoretical Study

Semenikhin, A. S. (author)
Samara National Research University
Shubina, E. G. (author)
Samara National Research University
Savchenkova, A. S. (author)
Samara National Research University
show more...
Chechet, I. V. (author)
Samara National Research University
Matveev, S. G. (author)
Samara National Research University
Konnov, A. A. (author)
Lund University,Lunds universitet,Förbränningsfysik,Fysiska institutionen,Institutioner vid LTH,Lunds Tekniska Högskola,Combustion Physics,Department of Physics,Departments at LTH,Faculty of Engineering, LTH
Mebel, A. M. (author)
Florida International University,Samara National Research University
show less...
 (creator_code:org_t)
2018-02-08
2018
English.
In: International Journal of Chemical Kinetics. - : Wiley. - 0538-8066. ; 50:4, s. 273-284
  • Journal article (peer-reviewed)
Abstract Subject headings
Close  
  • The mechanism of the reaction of ketene with methyl radical has been studied by ab initio CCSD(T)-F12/cc-pVQZ-f12//B2PLYPD3/6-311G** calculations of the potential energy surface. Temperature- and pressure-dependent reaction rate constants have been computed using the Rice-Ramsperger-Kassel-Marcus (RRKM)-Master Equation and transition state theory methods. Three main channels have been shown to dominate the reaction; the formation of the collisionally stabilized CH3COCH2 radical and the production of the C2H5 + CO and HCCO + CH4 bimolecular products. Relative contributions of the CH3COCH2, C2H5 + CO, and HCCO + CH4 channels strongly depend on the reaction conditions; the formation of thermalized CH3COCH2 is favored at low temperatures and high pressures, HCCO + CH4 is dominant at high temperatures, whereas the yield of C2H5 + CO peaks at intermediate temperatures around 1000 K. The C2H5 + CO channel is favored by a decrease in pressure but remains the second most important reaction pathway after HCCO + CH4 under typical flame conditions. The calculated rate constants at different pressures are proposed for kinetic modeling of ketene reactions in combustion in the form of modified Arrhenius expressions. Only rate constant to form CH3COCH2 depends on pressure, whereas those to produce C2H5 + CO and HCCO + CH4 appeared to be pressure independent.

Subject headings

NATURVETENSKAP  -- Kemi -- Oorganisk kemi (hsv//swe)
NATURAL SCIENCES  -- Chemical Sciences -- Inorganic Chemistry (hsv//eng)

Publication and Content Type

art (subject category)
ref (subject category)

Find in a library

To the university's database

  • 1 of 1
  • Previous record
  • Next record
  •    To hitlist

Search outside SwePub

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Close

Copy and save the link in order to return to this view