SwePub
Sök i LIBRIS databas

  Extended search

onr:"swepub:oai:lup.lub.lu.se:d530263b-ed7e-4ed6-8fd7-5a17489879ea"
 

Search: onr:"swepub:oai:lup.lub.lu.se:d530263b-ed7e-4ed6-8fd7-5a17489879ea" >

Phase separation in binary eye lens protein mixtures

Dorsaz, Nicolas (author)
Thurston, George M. (author)
Stradner, Anna (author)
show more...
Schurtenberger, Peter (author)
Lund University,Lunds universitet,Fysikalisk kemi,Enheten för fysikalisk och teoretisk kemi,Kemiska institutionen,Institutioner vid LTH,Lunds Tekniska Högskola,Physical Chemistry,Physical and theoretical chemistry,Department of Chemistry,Departments at LTH,Faculty of Engineering, LTH
Foffi, Giuseppe (author)
show less...
 (creator_code:org_t)
2011
English.
In: Soft Matter. - : Royal Society of Chemistry (RSC). - 1744-6848 .- 1744-683X. ; 7:5, s. 1763-1776
  • Journal article (peer-reviewed)
Abstract Subject headings
Close  
  • Liquid-liquid phase separation occurs in young mammalian eye lenses and in concentrated solutions of isolated eye lens proteins, and has been linked to some forms of cataract. Here we study theoretically the protein compositions and cloud temperatures of two separated equilibrium phases that form out of concentrated mixtures of model proteins, chosen to have properties similar to those which reproduce experimental data on mixtures of two of the prevalent mammalian eye lens proteins, gamma- and alpha-crystallin. We use a thermodynamic perturbation theory that has previously been shown to provide a quantitative model for key features of the experimentally observed neutron scattering, phase boundary and tie line data, and that is also consistent with corresponding model, coarse-grained molecular dynamics simulations. In so doing we find an extremely sensitive dependence of protein partitioning on mutual attraction that is likely to have implications for many other protein, colloid, and other soft condensed matter systems. Previously, we found that a model square well attraction between the proteins of well depth u(alpha gamma) approximate to 0.5 k(B)T protects concentrated gamma-alpha mixtures against thermodynamic instability and is thus essential for their transparency. Furthermore, the dependence of the mixture phase separation on u(alpha gamma) was found to be highly non-monotonic, in that either weakening or increasing u(alpha gamma) by 0.5 k(B)T can lead to considerably enhanced phase separation that occurs at much higher temperatures. In the present work we show that the compositions of the separated protein phases are even more dramatically sensitive to the magnitude of u(alpha gamma). Specifically, increasing u(alpha gamma) by just 0.2 k(B)T can change the phase separation of alpha-gamma mixtures from one that is primarily compositional in nature to one of protein density separation, in which the two phases in equilibrium differ principally in overall protein concentration. Further, for the square-well widths investigated, we find that the phase separation properties change relatively rapidly in response to changes in square well depth, in comparison with their response to changes in the diameter ratio of the model proteins. We discuss potential ways in which sensitive connections between changes in molecular attraction and their macroscopic consequences, a hallmark of concentrated liquid mixtures, can lead to potential molecular mechanisms for hereditary and other forms of cataract, and can be applied to other colloidal and physiological systems.

Subject headings

NATURVETENSKAP  -- Kemi -- Fysikalisk kemi (hsv//swe)
NATURAL SCIENCES  -- Chemical Sciences -- Physical Chemistry (hsv//eng)

Publication and Content Type

art (subject category)
ref (subject category)

To the university's database

Search outside SwePub

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Close

Copy and save the link in order to return to this view