SwePub
Sök i LIBRIS databas

  Extended search

onr:"swepub:oai:lup.lub.lu.se:d758eda0-e925-4927-966c-e033e2574122"
 

Search: onr:"swepub:oai:lup.lub.lu.se:d758eda0-e925-4927-966c-e033e2574122" > Landscape compositi...

  • 1 of 1
  • Previous record
  • Next record
  •    To hitlist

Landscape composition and pollinator traits interact to influence pollination success in an individual-based model

Kortsch, Susanne (author)
University of Helsinki
Saravia, Leonardo (author)
Argentina National Scientific and Technical Research Council
Cirtwill, Alyssa R. (author)
University of Helsinki
show more...
Timberlake, Thomas (author)
University of Bristol
Memmott, Jane (author)
University of Bristol
Kendall, Liam (author)
Lund University,Lunds universitet,BECC: Biodiversity and Ecosystem services in a Changing Climate,Centrum för miljö- och klimatvetenskap (CEC),Naturvetenskapliga fakulteten,Centre for Environmental and Climate Science (CEC),Faculty of Science
Roslin, Tomas (author)
Swedish University of Agricultural Sciences,University of Helsinki
Strona, Giovanni (author)
University of Helsinki,European Commission Joint Research Centre, Ispra
show less...
 (creator_code:org_t)
2023
2023
English.
In: Functional Ecology. - 0269-8463. ; 37:7, s. 2056-2071
  • Journal article (peer-reviewed)
Abstract Subject headings
Close  
  • The arrangement of plant species within a landscape influences pollination via changes in pollinator movement trajectories and plant–pollinator encounter rates. Yet the combined effects of landscape composition and pollinator traits (especially specialisation) on pollination success remain hard to quantify empirically. We used an individual-based model to explore how landscape and pollinator specialisation (degree) interact to influence pollination. We modelled variation in the landscape by generating gradients of plant species intermixing—from no mixing to complete intermixing. Furthermore, we varied the level of pollinator specialisation by simulating plant–pollinator (six to eight species) networks of different connectance. We then compared the impacts of these drivers on three proxies for pollination: visitation rate, number of consecutive visits to the focal plant species and expected number of plants pollinated. We found that the spatial arrangements of plants and pollinator degree interact to determine pollination success, and that the influence of these drivers on pollination depends on how pollination is estimated. For most pollinators, visitation rate increases in more plant mixed landscapes. Compared to the two more functional measures of pollination, visitation rate overestimates pollination service. This is particularly severe in landscapes with high plant intermixing and for generalist pollinators. Interestingly, visitation rate is less influenced by pollinator traits (pollinator degree and body size) than are the two functional metrics, likely because ‘visitation rate’ ignores the order in which pollinators visit plants. However, the visitation sequence order is crucial for the expected number of plants pollinated, since only prior visits to conspecific individuals can contribute to pollination. We show here that this order strongly depends on the spatial arrangements of plants, on pollinator traits and on the interaction between them. Taken together, our findings suggest that visitation rate, the most commonly used proxy for pollination in network studies, should be complemented with more functional metrics which reflect the frequency with which individual pollinators revisit the same plant species. Our findings also suggest that measures of landscape structure such as plant intermixing and density—in combination with pollinators' level of specialism—can improve estimates of the probability of pollination. Read the free Plain Language Summary for this article on the Journal blog.

Subject headings

NATURVETENSKAP  -- Biologi -- Ekologi (hsv//swe)
NATURAL SCIENCES  -- Biological Sciences -- Ecology (hsv//eng)

Keyword

agent-based model
habitat heterogeneity
movement ecology
Netlogo
patch size
visitation rate

Publication and Content Type

art (subject category)
ref (subject category)

Find in a library

To the university's database

  • 1 of 1
  • Previous record
  • Next record
  •    To hitlist

Search outside SwePub

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Close

Copy and save the link in order to return to this view