SwePub
Sök i LIBRIS databas

  Extended search

onr:"swepub:oai:lup.lub.lu.se:e0620646-02ec-470a-be52-c39d53184019"
 

Search: onr:"swepub:oai:lup.lub.lu.se:e0620646-02ec-470a-be52-c39d53184019" > Review on Modeling ...

  • 1 of 1
  • Previous record
  • Next record
  •    To hitlist

Review on Modeling Development for Multiscale Chemical Reactions Coupled Transport Phenomena in Solid Oxide Fuel Cells

Andersson, Martin (author)
Lund University,Lunds universitet,Värmeöverföring,Institutionen för energivetenskaper,Institutioner vid LTH,Lunds Tekniska Högskola,Heat Transfer,Department of Energy Sciences,Departments at LTH,Faculty of Engineering, LTH
Yuan, Jinliang (author)
Lund University,Lunds universitet,Värmeöverföring,Institutionen för energivetenskaper,Institutioner vid LTH,Lunds Tekniska Högskola,Heat Transfer,Department of Energy Sciences,Departments at LTH,Faculty of Engineering, LTH
Sundén, Bengt (author)
Lund University,Lunds universitet,Värmeöverföring,Institutionen för energivetenskaper,Institutioner vid LTH,Lunds Tekniska Högskola,Heat Transfer,Department of Energy Sciences,Departments at LTH,Faculty of Engineering, LTH
 (creator_code:org_t)
Elsevier BV, 2010
2010
English.
In: Applied Energy. - : Elsevier BV. - 1872-9118 .- 0306-2619. ; 87:5, s. 1461-1476
  • Research review (peer-reviewed)
Abstract Subject headings
Close  
  • A literature study is performed to compile the state-of-the-art, as well as future potential, in SOFC modeling. Principles behind various transport processes such as mass, heat, momentum and charge as well as for electrochemical and internal reforming reactions are described. A deeper investigation is made to find out potentials and challenges using a multiscale approach to model solid oxide fuel cells (SOFCs) and combine the accuracy at microscale with the calculation speed at macroscale to design SOFCs, based on a clear understanding of transport phenomena, chemical reactions and functional requirements. Suitable methods are studied to model SOFCs covering various length scales. Coupling methods between different approaches and length scales by multiscale models are outlined. Multiscale modeling increases the understanding for detailed transport phenomena, and can be used to make a correct decision on the specific design and control of operating conditions. It is expected that the development and production costs will be decreased and the energy efficiency be increased (reducing running cost) as the understanding of complex physical phenomena increases. It is concluded that the connection between numerical modeling and experiments is too rare and also that material parameters in most cases are valid only for standard materials and not for the actual SOFC component microstructures.

Subject headings

TEKNIK OCH TEKNOLOGIER  -- Maskinteknik -- Energiteknik (hsv//swe)
ENGINEERING AND TECHNOLOGY  -- Mechanical Engineering -- Energy Engineering (hsv//eng)

Keyword

multiscale modeling
SOFC
transport phenomena
chemical reaction
review

Publication and Content Type

for (subject category)
ref (subject category)

Find in a library

To the university's database

  • 1 of 1
  • Previous record
  • Next record
  •    To hitlist

Find more in SwePub

By the author/editor
Andersson, Marti ...
Yuan, Jinliang
Sundén, Bengt
About the subject
ENGINEERING AND TECHNOLOGY
ENGINEERING AND ...
and Mechanical Engin ...
and Energy Engineeri ...
Articles in the publication
Applied Energy
By the university
Lund University

Search outside SwePub

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Close

Copy and save the link in order to return to this view