SwePub
Sök i LIBRIS databas

  Extended search

onr:"swepub:oai:lup.lub.lu.se:ff34f605-c2f7-4ca1-b7cd-0ed522c087c9"
 

Search: onr:"swepub:oai:lup.lub.lu.se:ff34f605-c2f7-4ca1-b7cd-0ed522c087c9" > Automated de novo p...

  • 1 of 1
  • Previous record
  • Next record
  •    To hitlist

Automated de novo phasing and model building of coiled-coil proteins.

Rämisch, Sebastian (author)
Lund University,Lunds universitet,Biokemi och Strukturbiologi,Centrum för Molekylär Proteinvetenskap,Kemiska institutionen,Institutioner vid LTH,Lunds Tekniska Högskola,Biochemistry and Structural Biology,Center for Molecular Protein Science,Department of Chemistry,Departments at LTH,Faculty of Engineering, LTH
Lizatovic, Robert (author)
Lund University,Lunds universitet,Biokemi och Strukturbiologi,Centrum för Molekylär Proteinvetenskap,Kemiska institutionen,Institutioner vid LTH,Lunds Tekniska Högskola,Biochemistry and Structural Biology,Center for Molecular Protein Science,Department of Chemistry,Departments at LTH,Faculty of Engineering, LTH
André, Ingemar (author)
Lund University,Lunds universitet,Biokemi och Strukturbiologi,Centrum för Molekylär Proteinvetenskap,Kemiska institutionen,Institutioner vid LTH,Lunds Tekniska Högskola,Biochemistry and Structural Biology,Center for Molecular Protein Science,Department of Chemistry,Departments at LTH,Faculty of Engineering, LTH
 (creator_code:org_t)
2015
2015
English.
In: Acta Crystallographica. Section D: Biological Crystallography. - 1399-0047. ; 71:Pt 3, s. 606-614
  • Journal article (peer-reviewed)
Abstract Subject headings
Close  
  • Models generated by de novo structure prediction can be very useful starting points for molecular replacement for systems where suitable structural homologues cannot be readily identified. Protein-protein complexes and de novo-designed proteins are examples of systems that can be challenging to phase. In this study, the potential of de novo models of protein complexes for use as starting points for molecular replacement is investigated. The approach is demonstrated using homomeric coiled-coil proteins, which are excellent model systems for oligomeric systems. Despite the stereotypical fold of coiled coils, initial phase estimation can be difficult and many structures have to be solved with experimental phasing. A method was developed for automatic structure determination of homomeric coiled coils from X-ray diffraction data. In a benchmark set of 24 coiled coils, ranging from dimers to pentamers with resolutions down to 2.5 Å, 22 systems were automatically solved, 11 of which had previously been solved by experimental phasing. The generated models contained 71-103% of the residues present in the deposited structures, had the correct sequence and had free R values that deviated on average by 0.01 from those of the respective reference structures. The electron-density maps were of sufficient quality that only minor manual editing was necessary to produce final structures. The method, named CCsolve, combines methods for de novo structure prediction, initial phase estimation and automated model building into one pipeline. CCsolve is robust against errors in the initial models and can readily be modified to make use of alternative crystallographic software. The results demonstrate the feasibility of de novo phasing of protein-protein complexes, an approach that could also be employed for other small systems beyond coiled coils.

Subject headings

NATURVETENSKAP  -- Biologi -- Strukturbiologi (hsv//swe)
NATURAL SCIENCES  -- Biological Sciences -- Structural Biology (hsv//eng)

Publication and Content Type

art (subject category)
ref (subject category)

Find in a library

To the university's database

  • 1 of 1
  • Previous record
  • Next record
  •    To hitlist

Find more in SwePub

By the author/editor
Rämisch, Sebasti ...
Lizatovic, Rober ...
André, Ingemar
About the subject
NATURAL SCIENCES
NATURAL SCIENCES
and Biological Scien ...
and Structural Biolo ...
Articles in the publication
Acta Crystallogr ...
By the university
Lund University

Search outside SwePub

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Close

Copy and save the link in order to return to this view