SwePub
Sök i LIBRIS databas

  Extended search

onr:"swepub:oai:prod.swepub.kib.ki.se:116291353"
 

Search: onr:"swepub:oai:prod.swepub.kib.ki.se:116291353" > Neutrophil secretio...

  • 1 of 1
  • Previous record
  • Next record
  •    To hitlist

Neutrophil secretion products regulate anti-bacterial activity in monocytes and macrophages

Soehnlein, O (author)
Karolinska Institutet
Kenne, E (author)
Karolinska Institutet
Rotzius, P (author)
Karolinska Institutet
show more...
Eriksson, EE (author)
Karolinska Institutet
Lindbom, L (author)
Karolinska Institutet
show less...
 (creator_code:org_t)
2007-11-07
2008
English.
In: Clinical and experimental immunology. - : Oxford University Press (OUP). - 1365-2249 .- 0009-9104. ; 151:1, s. 139-145
  • Journal article (peer-reviewed)
Abstract Subject headings
Close  
  • Macrophages represent a multi-functional cell type in innate immunity that contributes to bacterial clearance by recognition, phagocytosis and killing. In acute inflammation, infiltrating neutrophils release a wide array of preformed granule proteins which interfere functionally with their environment. Here, we present a novel role for neutrophil-derived granule proteins in the anti-microbial activity of macrophages. Neutrophil secretion obtained by antibody cross-linking of the integrin subunit CD18 (X-link secretion) or by treatment with N-Formyl-Met-Leu-Phe (fMLP secretion) induced a several-fold increase in bacterial phagocytosis by monocytes and macrophages. This response was associated with a rapid activation of the monocytes and macrophages as depicted by an increase in cytosolic free Ca2+. Interestingly, fMLP secretion had a more pronounced effect on monocytes than the X-link secretion, while the opposite was observed for macrophages. In addition, polymorphonuclear cells (PMN) secretion caused a strong enhancement of intracellular reactive oxygen species (ROS) formation compared to incubation with bacteria. Thus, secretion of neutrophil granule proteins activates macrophages to increase the phagocytosis of bacteria and to enhance intracellular ROS formation, indicating pronounced intracellular bacterial killing. Both mechanisms attribute novel microbicidal properties to PMN granule proteins, suggesting their potential use in anti-microbial therapy.

Publication and Content Type

ref (subject category)
art (subject category)

Find in a library

To the university's database

  • 1 of 1
  • Previous record
  • Next record
  •    To hitlist

Find more in SwePub

By the author/editor
Soehnlein, O
Kenne, E
Rotzius, P
Eriksson, EE
Lindbom, L
Articles in the publication
Clinical and exp ...
By the university
Karolinska Institutet

Search outside SwePub

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Close

Copy and save the link in order to return to this view