SwePub
Sök i LIBRIS databas

  Extended search

onr:"swepub:oai:prod.swepub.kib.ki.se:145279793"
 

Search: onr:"swepub:oai:prod.swepub.kib.ki.se:145279793" > Underestimated Peri...

  • 1 of 1
  • Previous record
  • Next record
  •    To hitlist

Underestimated Peripheral Effects Following Pharmacological and Conditional Genetic Microglial Depletion

Han, JM (author)
Karolinska Institutet
Fan, YS (author)
Zhou, K (author)
show more...
Zhu, KY (author)
Karolinska Institutet
Blomgren, K (author)
Karolinska Institutet
Lund, H (author)
Karolinska Institutet
Zhang, XM (author)
Harris, RA (author)
Karolinska Institutet
show less...
 (creator_code:org_t)
2020-11-15
2020
English.
In: International journal of molecular sciences. - : MDPI AG. - 1422-0067. ; 21:22
  • Journal article (peer-reviewed)
Abstract Subject headings
Close  
  • Microglia, predominant parenchymal resident macrophages in the central nervous system (CNS), are crucial players in neurodevelopment and CNS homeostasis. In disease conditions, pro-inflammatory microglia predominate over their regulatory counterparts, and are thus a potential immunotherapeutic target. It has been well documented that microglia can be effectively depleted using both conditional genetic Cx3cr1Cre-diphtheria toxin receptor (DTR)/diphtheria toxin subunit A (DTA) animal models and pharmacological colony-stimulating factor 1 receptor (CSF1R) inhibitors. Recent advances using these approaches have expanded our knowledge of the multitude of tasks conducted by microglia in both homeostasis and diseases. Importantly, experimental microglial depletion has been proven to exert neuroprotective effects in an increasing number of disease models, mostly explained by reduced neuroinflammation. However, the comprehensive effects of additional targets such as circulating monocytes and peripheral tissue macrophages during microglial depletion periods have not been investigated widely, and for those studies addressing the issue the conclusions are mixed. In this study, we demonstrate that experimental microglial depletion using both Cx3cr1CreER/+Rosa26DTA/+ mice and different doses of CSF1R inhibitor PLX3397 exert crucial influences on circulating monocytes and peripheral tissue macrophages. Our results suggest that effects on peripheral immunity should be considered both in interpretation of microglial depletion studies, and especially in the potential translation of microglial depletion and replacement therapies.

Publication and Content Type

ref (subject category)
art (subject category)

Find in a library

To the university's database

  • 1 of 1
  • Previous record
  • Next record
  •    To hitlist

Search outside SwePub

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Close

Copy and save the link in order to return to this view