SwePub
Sök i LIBRIS databas

  Extended search

onr:"swepub:oai:prod.swepub.kib.ki.se:149760009"
 

Search: onr:"swepub:oai:prod.swepub.kib.ki.se:149760009" > Prostaglandin E2 Ex...

  • 1 of 1
  • Previous record
  • Next record
  •    To hitlist

Prostaglandin E2 Exerts Biphasic Dose Response on the PreBötzinger Complex Respiratory-Related Rhythm

Reising, JP (author)
Karolinska Institutet
Phillips, WS (author)
Ramadan, N (author)
show more...
Herlenius, E (author)
Karolinska Institutet
show less...
 (creator_code:org_t)
2022-05-20
2022
English.
In: Frontiers in neural circuits. - : Frontiers Media SA. - 1662-5110. ; 16, s. 826497-
  • Journal article (peer-reviewed)
Abstract Subject headings
Close  
  • Inflammation in infants can cause respiratory dysfunction and is potentially life-threatening. Prostaglandin E2 (PGE2) is released during inflammatory events and perturbs breathing behavior in vivo. Here we study the effects of PGE2 on inspiratory motor rhythm generated by the preBötzinger complex (preBötC). We measured the concentration dependence of PGE2 (1 nM-1 μM) on inspiratory-related motor output in rhythmic medullary slice preparations. Low concentrations (1–10 nM) of PGE2 increased the duration of the inspiratory burst period, while higher concentrations (1 μM) decreased the burst period duration. Using specific pharmacology for prostanoid receptors (EP1-4R, FPR, and DP2R), we determined that coactivation of both EP2R and EP3R is necessary for PGE2 to modulate the inspiratory burst period. Additionally, biased activation of EP3 receptors lengthened the duration of the inspiratory burst period, while biased activation of EP2 receptors shortened the burst period. To help delineate which cell populations are affected by exposure to PGE2, we analyzed single-cell RNA-Seq data derived from preBötC cells. Transcripts encoding for EP2R (Ptger2) were differentially expressed in a cluster of excitatory neurons putatively located in the preBötC. A separate cluster of mixed inhibitory neurons differentially expressed EP3R (Ptger3). Our data provide evidence that EP2 and EP3 receptors increase the duration of the inspiratory burst period at 1–10 nM PGE2 and decrease the burst period duration at 1 μM. Further, the biphasic dose response likely results from differences in receptor binding affinity among prostanoid receptors.

Publication and Content Type

ref (subject category)
art (subject category)

Find in a library

To the university's database

  • 1 of 1
  • Previous record
  • Next record
  •    To hitlist

Find more in SwePub

By the author/editor
Reising, JP
Phillips, WS
Ramadan, N
Herlenius, E
Articles in the publication
Frontiers in neu ...
By the university
Karolinska Institutet

Search outside SwePub

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Close

Copy and save the link in order to return to this view