SwePub
Sök i LIBRIS databas

  Extended search

onr:"swepub:oai:prod.swepub.kib.ki.se:149784462"
 

Search: onr:"swepub:oai:prod.swepub.kib.ki.se:149784462" > Autophagy Impairmen...

  • 1 of 1
  • Previous record
  • Next record
  •    To hitlist

Autophagy Impairment in App Knock-in Alzheimer's Model Mice

Jiang, RC (author)
Shimozawa, M (author)
Karolinska Institutet
Mayer, J (author)
Karolinska Institutet
show more...
Tambaro, S (author)
Karolinska Institutet
Kumar, R (author)
Karolinska Institutet
Abelein, A (author)
Karolinska Institutet
Winblad, B (author)
Karolinska Institutet
Bogdanovic, N (author)
Karolinska Institutet
Nilsson, P (author)
Karolinska Institutet
show less...
 (creator_code:org_t)
2022-05-19
2022
English.
In: Frontiers in aging neuroscience. - : Frontiers Media SA. - 1663-4365. ; 14, s. 878303-
  • Journal article (peer-reviewed)
Abstract Subject headings
Close  
  • Alzheimer’s disease (AD) is characterized by impaired protein homeostasis leading to amyloid-β peptide (Aβ) amyloidosis. Amyloid precursor protein (APP) knock-in mice exhibit robust Aβ pathology, providing possibilities to determine its effect on protein homeostasis including autophagy. Here we compared human AD postmortem brain tissue with brains from two different types of App knock-in mice, AppNL–F and AppNL–G–F mice, exhibiting AD-like pathology. In AD postmortem brains, p62 levels are increased and p62-positive staining is detected in neurons, including potential axonal beadings, as well as in the vasculature and in corpora amylacea. Interestingly, p62 is also increased in the neurons in 12-month-old AppNL–G–F mice. In brain homogenates from 12-month-old AppNL–G–F mice, both p62 and light chain 3 (LC3)-II levels are increased as compared to wildtype (WT) mice, indicating inhibited autophagy. Double immunostaining for LC3 and Aβ revealed LC3-positive puncta in hippocampus of 24-month-old AppNL–F mice around the Aβ plaques which was subsequently identified by electron microscopy imaging as an accumulation of autophagic vacuoles in dystrophic neurites around the Aβ plaques. Taken together, autophagy is impaired in App knock-in mice upon increased Aβ pathology, indicating that App knock-in mouse models provide a platform for understanding the correlation between Aβ and autophagy.

Publication and Content Type

ref (subject category)
art (subject category)

Find in a library

To the university's database

  • 1 of 1
  • Previous record
  • Next record
  •    To hitlist

Search outside SwePub

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Close

Copy and save the link in order to return to this view