SwePub
Sök i LIBRIS databas

  Extended search

onr:"swepub:oai:research.chalmers.se:0ca3f8ed-909b-4be9-8d0b-1ebf577ca86c"
 

Search: onr:"swepub:oai:research.chalmers.se:0ca3f8ed-909b-4be9-8d0b-1ebf577ca86c" > Quantum Spin Hall S...

  • 1 of 1
  • Previous record
  • Next record
  •    To hitlist

Quantum Spin Hall States in 2D Bismuth-Based Materials

Li, Gang (author)
ShanghaiTech University
Wang, Shu Min, 1963 (author)
Chinese Academy of Sciences,Chalmers tekniska högskola,Chalmers University of Technology
 (creator_code:org_t)
2019-07-03
2019
English.
In: Springer Series in Materials Science. - Singapore : Springer Singapore. - 2196-2812 .- 0933-033X. ; 285, s. 351-379
  • Book chapter (other academic/artistic)
Abstract Subject headings
Close  
  • Berrys phase, an inherent constituent of the electronic wave functions, has revolutionarily enriched our understanding of the fundamental states of matter and has triggered the discovery of many interesting phenomena in condensed matter physics, such as quantum charge/spin pumping, polarization, topological insulating phase, etc. Among them, the discovery of the two-dimensional (2D) quantum spin Hall (QSH) states protected by time-reversal symmetry (TRS) boosts the wide interest in the study of topological materials in the past decade. These include the 2D quantum anomalous Hall states (QAH), three-dimensional topological insulators (TIs), Dirac semimetals (SM), and topological nodal-line SMs as well as Weyl SMs. This article by no means can cover everything of this rapidly developing field, we rather focus on the bismuth-based honeycomb materials hosting large-gap QSH/QAH states, which promise applications for room-temperature spintronic. We will explain their topological mechanisms in terms of Berrys phase and topological invariant. After introducing a concrete material example which has been successfully grown in experiment, e.g., Bi/SiC(0001), various theoretical proposals on atom substitution and functionalization based on bismuth honeycomb lattice will then be discussed, from which a general designing principle for achieving large topological gaps can be summarized. This article hopes to stimulate more experimental activities toward the examination of large-gap QSH/QAH theoretical proposals and the potential applications in spintronic devices.

Subject headings

NATURVETENSKAP  -- Fysik -- Atom- och molekylfysik och optik (hsv//swe)
NATURAL SCIENCES  -- Physical Sciences -- Atom and Molecular Physics and Optics (hsv//eng)
NATURVETENSKAP  -- Fysik -- Annan fysik (hsv//swe)
NATURAL SCIENCES  -- Physical Sciences -- Other Physics Topics (hsv//eng)
NATURVETENSKAP  -- Fysik -- Den kondenserade materiens fysik (hsv//swe)
NATURAL SCIENCES  -- Physical Sciences -- Condensed Matter Physics (hsv//eng)

Publication and Content Type

kap (subject category)
vet (subject category)

Find in a library

To the university's database

  • 1 of 1
  • Previous record
  • Next record
  •    To hitlist

Search outside SwePub

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Close

Copy and save the link in order to return to this view