SwePub
Sök i LIBRIS databas

  Extended search

onr:"swepub:oai:research.chalmers.se:2274f055-76fb-461f-bc40-c30d1b858837"
 

Search: onr:"swepub:oai:research.chalmers.se:2274f055-76fb-461f-bc40-c30d1b858837" > Technetium chemistr...

  • 1 of 1
  • Previous record
  • Next record
  •    To hitlist

Technetium chemistry in a novel group actinide extraction process

Aneheim, Emma, 1982 (author)
Chalmers tekniska högskola,Chalmers University of Technology
Ekberg, Christian, 1967 (author)
Chalmers tekniska högskola,Chalmers University of Technology
Littley, A. (author)
Chalmers tekniska högskola,Chalmers University of Technology
show more...
Löfström Engdahl, Elin, 1983 (author)
Chalmers tekniska högskola,Chalmers University of Technology
Skarnemark, Gunnar, 1948 (author)
Chalmers tekniska högskola,Chalmers University of Technology
show less...
 (creator_code:org_t)
2012-07-18
2013
English.
In: Journal of Radioanalytical and Nuclear Chemistry. - : Springer Science and Business Media LLC. - 0236-5731 .- 1588-2780. ; 296:2, s. 743-748
  • Journal article (peer-reviewed)
Abstract Subject headings
Close  
  • A newly developed method for advanced reprocessing of used nuclear fuel is the Group ActiNide EXtraction (GANEX) process. It is a liquid-liquid extraction process that aims at extracting all the actinides as a group from dissolved used nuclear fuel. This extraction can either be performed after a removal of the bulk uranium or directly on the dissolution liquor. At Chalmers University of Technology in Sweden a solvent that utilizes tributyl-phosphate (TBP) and a molecule from the bis-triazine bipyridine (BTBP) class of ligands dissolved in cyclohexanone has been developed for the use in a GANEX process. Previously the system has not been tested with the presence of technetium that is one of the major fission products. Technetium is often considered a problem within reprocessing since it has a chemical behaviour that differs from most other elements in the spent fuel. Therefore, a special emphasis was put on the investigation of technetium in the selected GANEX system. It was shown that technetium is readily extracted by the GANEX solvent and that cyclohexanone is the main extractant when no other metals were present in the system. It was also found that the presence of uranium decreased the overall technetium extraction despite a slight co-extraction with TBP, while irradiation of the GANEX solvent to large doses ([>1 MGy) increased its technetium extraction capability. It was also discovered that an increased nitrate concentration in the aqueous phase and an addition of other fission products both inhibited the technetium extraction even though fission product loading most likely changed the extraction mechanism to co-extraction by BTBP.

Subject headings

NATURVETENSKAP  -- Kemi -- Oorganisk kemi (hsv//swe)
NATURAL SCIENCES  -- Chemical Sciences -- Inorganic Chemistry (hsv//eng)

Keyword

Cyclohexanone
GANEX
BTBP
Technetium

Publication and Content Type

art (subject category)
ref (subject category)

Find in a library

To the university's database

  • 1 of 1
  • Previous record
  • Next record
  •    To hitlist

Search outside SwePub

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Close

Copy and save the link in order to return to this view