SwePub
Sök i LIBRIS databas

  Extended search

onr:"swepub:oai:research.chalmers.se:279847d4-bcdf-4e67-bd8f-9efc50bc2e5f"
 

Search: onr:"swepub:oai:research.chalmers.se:279847d4-bcdf-4e67-bd8f-9efc50bc2e5f" > Tailoring Hot-Carri...

  • 1 of 1
  • Previous record
  • Next record
  •    To hitlist

Tailoring Hot-Carrier Distributions of Plasmonic Nanostructures through Surface Alloying

Fojt, Jakub, 1996 (author)
Chalmers tekniska högskola,Chalmers University of Technology
Rossi, T. P. (author)
Aalto-Yliopisto,Aalto University
Kumar, Priyank V. (author)
University of New South Wales (UNSW)
show more...
Erhart, Paul, 1978 (author)
Chalmers tekniska högskola,Chalmers University of Technology
show less...
 (creator_code:org_t)
2024
2024
English.
In: ACS Nano. - 1936-086X .- 1936-0851. ; 18:8, s. 6398-6405
  • Journal article (peer-reviewed)
Abstract Subject headings
Close  
  • Alloyed metal nanoparticles are a promising platform for plasmonically enabled hot-carrier generation, which can be used to drive photochemical reactions. Although the non-plasmonic component in these systems has been investigated for its potential to enhance catalytic activity, its capacity to affect the photochemical process favorably has been underexplored by comparison. Here, we study the impact of surface alloy species and concentration on hot-carrier generation in Ag nanoparticles. By first-principles simulations, we photoexcite the localized surface plasmon, allow it to dephase, and calculate spatially and energetically resolved hot-carrier distributions. We show that the presence of non-noble species in the topmost surface layer drastically enhances hot-hole generation at the surface at the expense of hot-hole generation in the bulk, due to the additional d-type states that are introduced to the surface. The energy of the generated holes can be tuned by choice of the alloyant, with systematic trends across the d-band block. Already low surface alloy concentrations have a large impact, with a saturation of the enhancement effect typically close to 75% of a monolayer. Hot-electron generation at the surface is hindered slightly by alloying, but here a judicious choice of the alloy composition allows one to strike a balance between hot electrons and holes. Our work underscores the promise of utilizing multicomponent nanoparticles to achieve enhanced control over plasmonic catalysis and provides guidelines for how hot-carrier distributions can be tailored by designing the electronic structure of the surface through alloying.

Subject headings

NATURVETENSKAP  -- Kemi -- Fysikalisk kemi (hsv//swe)
NATURAL SCIENCES  -- Chemical Sciences -- Physical Chemistry (hsv//eng)
TEKNIK OCH TEKNOLOGIER  -- Materialteknik -- Metallurgi och metalliska material (hsv//swe)
ENGINEERING AND TECHNOLOGY  -- Materials Engineering -- Metallurgy and Metallic Materials (hsv//eng)
NATURVETENSKAP  -- Fysik -- Den kondenserade materiens fysik (hsv//swe)
NATURAL SCIENCES  -- Physical Sciences -- Condensed Matter Physics (hsv//eng)

Keyword

Hot-carrier
Time-dependent density functional theory
Plasmonic catalysis
Alloys
Nanoparticles

Publication and Content Type

art (subject category)
ref (subject category)

Find in a library

  • ACS Nano (Search for host publication in LIBRIS)

To the university's database

  • 1 of 1
  • Previous record
  • Next record
  •    To hitlist

Search outside SwePub

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Close

Copy and save the link in order to return to this view