SwePub
Sök i LIBRIS databas

  Extended search

onr:"swepub:oai:research.chalmers.se:3acb9557-d3b4-4c73-85ba-8ece74a17599"
 

Search: onr:"swepub:oai:research.chalmers.se:3acb9557-d3b4-4c73-85ba-8ece74a17599" > A Simulation Based ...

  • 1 of 1
  • Previous record
  • Next record
  •    To hitlist

A Simulation Based Comparative Study on Thermal and Mechanical Performance of Silicone Grease and Graphene-enhanced Thermal Pad for Single-chip and Multi-chip Packaging Applications

Chen, Jiabin (author)
SHT Smart High-Tech AB
Xuan, Yunzheng (author)
Liu, Yiran (author)
show more...
Chen, Jin (author)
SHT Smart High-Tech AB
Wang, Yuanyuan (author)
SHT Smart High-Tech AB
Moller, Johan (author)
SHT Smart High-Tech AB
Liu, Johan, 1960 (author)
SHT Smart High-Tech AB,Chalmers tekniska högskola,Chalmers University of Technology
show less...
 (creator_code:org_t)
2024
2024
English.
In: NordPac 2024 - 60th Annual Microelectronics and Packaging Conference and Exhibition.
  • Conference paper (peer-reviewed)
Abstract Subject headings
Close  
  • With the fast move of information technology, the requirements for chip computing power are gradually increasing, and increased chip operation temperature is one of the most important factors restricting chip computing efficiently. The cooling material plays a decisive role in reducing the surface and internal temperature of the working chip. Commercial heat dissipation materials use thermally conductive silicone grease, metal indium, thermal gaskets and so on. In this paper, the heat balance of the chip temperature, stress and strain using different heat dissipation materials are studied using FEM based simulation, comparing thermal conductive silicone grease with a recently developed graphene-enhanced thermal pad using the same power for single-chip and multi-chips packaging applications. The results show that in the case of a single chip packaging, compared with thermally conductive silicone grease, the heat dissipation effect is obviously observed and the high stress of the chip using graphene-enhanced thermal pad is significantly reduced. The simulation was also done after integrating a heat sink and a heat dissipation substrate. Even in this case, the same conclusion is achieved, i.e. that the chip temperature and the high stress of the chip were significantly reduced by using the graphene-enhanced thermal pad. In summary, the graphene-enhanced thermal pad has excellent flexibility and thermal conductivity, thanks to its special manufacturing process compared to the thermal paste and the use of graphene-enhanced thermal pad provides a better choice to solve the heat dissipation problem of future power chip cooling applications, especially for the heat dissipation problem of high-performance computing, AI and graphic chip-based electronics.

Subject headings

TEKNIK OCH TEKNOLOGIER  -- Maskinteknik -- Produktionsteknik, arbetsvetenskap och ergonomi (hsv//swe)
ENGINEERING AND TECHNOLOGY  -- Mechanical Engineering -- Production Engineering, Human Work Science and Ergonomics (hsv//eng)
TEKNIK OCH TEKNOLOGIER  -- Elektroteknik och elektronik -- Annan elektroteknik och elektronik (hsv//swe)
ENGINEERING AND TECHNOLOGY  -- Electrical Engineering, Electronic Engineering, Information Engineering -- Other Electrical Engineering, Electronic Engineering, Information Engineering (hsv//eng)

Keyword

Simulation
Graphene-enhanced thermal pad
multi-chip packaging
Thermal interface material
cooling
single-chip

Publication and Content Type

kon (subject category)
ref (subject category)

To the university's database

  • 1 of 1
  • Previous record
  • Next record
  •    To hitlist

Find more in SwePub

By the author/editor
Chen, Jiabin
Xuan, Yunzheng
Liu, Yiran
Chen, Jin
Wang, Yuanyuan
Moller, Johan
show more...
Liu, Johan, 1960
show less...
About the subject
ENGINEERING AND TECHNOLOGY
ENGINEERING AND ...
and Mechanical Engin ...
and Production Engin ...
ENGINEERING AND TECHNOLOGY
ENGINEERING AND ...
and Electrical Engin ...
and Other Electrical ...
Articles in the publication
By the university
Chalmers University of Technology

Search outside SwePub

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Close

Copy and save the link in order to return to this view