SwePub
Sök i LIBRIS databas

  Extended search

onr:"swepub:oai:research.chalmers.se:4a5abbb1-426f-4ebe-9ef1-6606ebd827a5"
 

Search: onr:"swepub:oai:research.chalmers.se:4a5abbb1-426f-4ebe-9ef1-6606ebd827a5" > Engineering of Sacc...

  • 1 of 1
  • Previous record
  • Next record
  •    To hitlist
  • Choi, BoHyun,1986Chalmers tekniska högskola,Chalmers University of Technology (author)

Engineering of Saccharomyces cerevisiae for enhanced metabolic robustness and L-lactic acid production from lignocellulosic biomass

  • Article/chapterEnglish2024

Publisher, publication year, extent ...

  • 2024
  • electronicrdacarrier

Numbers

  • LIBRIS-ID:oai:research.chalmers.se:4a5abbb1-426f-4ebe-9ef1-6606ebd827a5
  • https://research.chalmers.se/publication/541317URI
  • https://doi.org/10.1016/j.ymben.2024.05.003DOI

Supplementary language notes

  • Language:English
  • Summary in:English

Part of subdatabase

Classification

  • Subject category:art swepub-publicationtype
  • Subject category:ref swepub-contenttype

Notes

  • Metabolic engineering for high productivity and increased robustness is needed to enable sustainable biomanufacturing of lactic acid from lignocellulosic biomass. Lactic acid is an important commodity chemical used for instance as a monomer for production of polylactic acid, a biodegradable polymer. Here, rational and model-based optimization was used to engineer a diploid, xylose fermenting Saccharomyces cerevisiae strain to produce L-lactic acid. The metabolic flux was steered towards lactic acid through the introduction of multiple lactate dehydrogenase encoding genes while deleting ERF2, GPD1, and CYB2. A production of 93 g/L of lactic acid with a yield of 0.84 g/g was achieved using xylose as the carbon source. To increase xylose utilization and reduce acetic acid synthesis, PHO13 and ALD6 were also deleted from the strain. Finally, CDC19 encoding a pyruvate kinase was overexpressed, resulting in a yield of 0.75 g lactic acid/g sugars consumed, when the substrate used was a synthetic lignocellulosic hydrolysate medium, containing hexoses, pentoses and inhibitors such as acetate and furfural. Notably, modeling also provided leads for understanding the influence of oxygen in lactic acid production. High lactic acid production from xylose, at oxygen-limitation could be explained by a reduced flux through the oxidative phosphorylation pathway. On the contrast, higher oxygen levels were beneficial for lactic acid production with the synthetic hydrolysate medium, likely as higher ATP concentrations are needed for tolerating the inhibitors therein. The work highlights the potential of S. cerevisiae for industrial production of lactic acid from lignocellulosic biomass.

Subject headings and genre

Added entries (persons, corporate bodies, meetings, titles ...)

  • Tafur Rangel, Albert,1992Chalmers tekniska högskola,Chalmers University of Technology,Novo Nordisk Fonden,Novo Nordisk Foundation(Swepub:cth)tafur (author)
  • Kerkhoven, Eduard,1985Chalmers tekniska högskola,Chalmers University of Technology,Novo Nordisk Fonden,Novo Nordisk Foundation,Science for Life Laboratory (SciLifeLab)(Swepub:cth)eduardk (author)
  • Nygård, Yvonne,1986Chalmers tekniska högskola,Chalmers University of Technology,Teknologian Tutkimuskeskus (VTT),Technical Research Centre of Finland (VTT)(Swepub:cth)nygardy (author)
  • Chalmers tekniska högskolaNovo Nordisk Fonden (creator_code:org_t)

Related titles

  • In:Metabolic Engineering84, s. 23-331096-71761096-7184

Internet link

Find in a library

To the university's database

  • 1 of 1
  • Previous record
  • Next record
  •    To hitlist

Search outside SwePub

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Close

Copy and save the link in order to return to this view