SwePub
Sök i LIBRIS databas

  Extended search

onr:"swepub:oai:research.chalmers.se:50f6259e-aced-4919-aaab-dd88994c9de8"
 

Search: onr:"swepub:oai:research.chalmers.se:50f6259e-aced-4919-aaab-dd88994c9de8" > Graphene Oxide Atte...

  • 1 of 1
  • Previous record
  • Next record
  •    To hitlist

Graphene Oxide Attenuates Toxicity of Amyloid-β Aggregates in Yeast by Promoting Disassembly and Boosting Cellular Stress Response

Chen, Xin, 1980 (author)
Chalmers tekniska högskola,Chalmers University of Technology
Pandit, Santosh, 1987 (author)
Chalmers tekniska högskola,Chalmers University of Technology
Shi, Lei, 1981 (author)
Chalmers tekniska högskola,Chalmers University of Technology
show more...
Ravikumar, V. (author)
Novo Nordisk Fonden,Novo Nordisk Foundation
Køhler, Julie Bonne (author)
Novo Nordisk Fonden,Novo Nordisk Foundation
Svetlicic, Ema (author)
Novo Nordisk Fonden,Novo Nordisk Foundation
Cao, Zhejian, 1991 (author)
Chalmers tekniska högskola,Chalmers University of Technology
Garg, Abhroop (author)
Novo Nordisk Fonden,Novo Nordisk Foundation
Petranovic Nielsen, Dina, 1975 (author)
Chalmers tekniska högskola,Chalmers University of Technology,Novo Nordisk Fonden,Novo Nordisk Foundation
Mijakovic, Ivan, 1975 (author)
Novo Nordisk Fonden,Novo Nordisk Foundation,Chalmers tekniska högskola,Chalmers University of Technology
show less...
 (creator_code:org_t)
2023
2023
English.
In: Advanced Functional Materials. - 1616-3028 .- 1616-301X. ; 33:45
  • Journal article (peer-reviewed)
Abstract Subject headings
Close  
  • Alzheimer's disease (AD) is the most prevalent neurodegenerative disease, with the aggregation of misfolded amyloid-β (Aβ) peptides in the brain being one of its histopathological hallmarks. Recently, graphene oxide (GO) nanoflakes have attracted significant attention in biomedical areas due to their capacity of suppressing Aβ aggregation in vitro. The mechanism of this beneficial effect has not been fully understood in vivo. Herein, the impact of GO on intracellular Aβ42 aggregates and cytotoxicity is investigated using yeast Saccharomyces cerevisiae as the model organism. This study finds that GO nanoflakes can effectively penetrate yeast cells and reduce Aβ42 toxicity. Combination of proteomics data and follow-up experiments show that GO treatment alters cellular metabolism to increases cellular resistance to misfolded protein stress and oxidative stress, and reduces amounts of intracellular Aβ42 oligomers. Additionally, GO treatment also reduces HTT103QP toxicity in the Huntington's disease (HD) yeast model. The findings offer insights for rationally designing GO nanoflakes-based therapies for attenuating cytotoxicity of Aβ42, and potentially of other misfolded proteins involved in neurodegenerative pathology.

Subject headings

NATURVETENSKAP  -- Biologi -- Cellbiologi (hsv//swe)
NATURAL SCIENCES  -- Biological Sciences -- Cell Biology (hsv//eng)
NATURVETENSKAP  -- Biologi -- Biokemi och molekylärbiologi (hsv//swe)
NATURAL SCIENCES  -- Biological Sciences -- Biochemistry and Molecular Biology (hsv//eng)
MEDICIN OCH HÄLSOVETENSKAP  -- Medicinska och farmaceutiska grundvetenskaper -- Neurovetenskaper (hsv//swe)
MEDICAL AND HEALTH SCIENCES  -- Basic Medicine -- Neurosciences (hsv//eng)
MEDICIN OCH HÄLSOVETENSKAP  -- Medicinsk bioteknologi -- Medicinsk bioteknologi (hsv//swe)
MEDICAL AND HEALTH SCIENCES  -- Medical Biotechnology -- Medical Biotechnology (hsv//eng)

Keyword

graphene oxide
misfolded protein
amyloid-β
Alzheimer's disease
oxidative stress

Publication and Content Type

art (subject category)
ref (subject category)

Find in a library

To the university's database

  • 1 of 1
  • Previous record
  • Next record
  •    To hitlist

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Close

Copy and save the link in order to return to this view