SwePub
Sök i LIBRIS databas

  Extended search

onr:"swepub:oai:research.chalmers.se:56c74b2b-110a-45f0-ab9e-8cebdfc3f917"
 

Search: onr:"swepub:oai:research.chalmers.se:56c74b2b-110a-45f0-ab9e-8cebdfc3f917" > Fouling characteris...

  • 1 of 1
  • Previous record
  • Next record
  •    To hitlist

Fouling characteristics of microcrystalline cellulose during cross-flow microfiltration: Insights from fluid dynamic gauging and molecular dynamics simulations

Arandia, Kenneth Gacutno, 1990 (author)
Chalmers tekniska högskola,Chalmers University of Technology
Karna, Nabin Kumar, 1984 (author)
Chalmers tekniska högskola,Chalmers University of Technology
Mattsson, Tuve, 1979 (author)
Chalmers tekniska högskola,Chalmers University of Technology
show more...
Larsson, Anette, 1966 (author)
Chalmers tekniska högskola,Chalmers University of Technology
Theliander, Hans, 1956 (author)
Chalmers tekniska högskola,Chalmers University of Technology
show less...
 (creator_code:org_t)
Elsevier BV, 2023
2023
English.
In: Journal of Membrane Science. - : Elsevier BV. - 1873-3123 .- 0376-7388. ; 669
  • Journal article (peer-reviewed)
Abstract Subject headings
Close  
  • The fouling behaviour of microcrystalline cellulose (MCC) particles on polyethersulfone (PES) membranes was investigated using fluid dynamic gauging (FDG) and molecular dynamics (MD) simulations. Experimental cross-flow microfiltration (MF) of a dilute MCC suspension at 400 mbar transmembrane pressure using 0.45 μm PES membranes revealed an estimated fouling layer thickness of 616 ± 5 μm for both fouled and re-fouled membranes at an applied shear stress of 37 ± 2 Pa. A decline in pure water flux was observed after each membrane cleaning and flushing procedure, indicating that highly resilient layers were formed close to the membrane surface. A possible explanation for the formation of resilient cellulose layers was obtained through MD simulations of the free energy profiles, which predicted deep energy minima at close interparticle separations of the cellulose–cellulose and cellulose–PES systems. The consequence of this energy minima is that attractive and repulsive forces are in balance at a specific distance between the particles, suggesting high binding energy at close interparticle distances. This implies that a certain force is needed to remove the layer or redisperse the cellulose particles. MD simulations also suggested that contributions made by repulsive hydration forces negatively influenced the adsorption of cellulose particles onto the PES membrane. These results highlight how experimental FDG measurements, when complemented with MD simulations, can provide insights into the fouling behaviour of an organic model material during cross-flow filtration.

Subject headings

TEKNIK OCH TEKNOLOGIER  -- Annan teknik -- Livsmedelsteknik (hsv//swe)
ENGINEERING AND TECHNOLOGY  -- Other Engineering and Technologies -- Food Engineering (hsv//eng)
NATURVETENSKAP  -- Biologi -- Biofysik (hsv//swe)
NATURAL SCIENCES  -- Biological Sciences -- Biophysics (hsv//eng)
TEKNIK OCH TEKNOLOGIER  -- Maskinteknik -- Strömningsmekanik och akustik (hsv//swe)
ENGINEERING AND TECHNOLOGY  -- Mechanical Engineering -- Fluid Mechanics and Acoustics (hsv//eng)

Keyword

Membrane fouling
Fluid dynamic gauging
Free energy
Microcrystalline cellulose
Molecular dynamics

Publication and Content Type

art (subject category)
ref (subject category)

Find in a library

To the university's database

  • 1 of 1
  • Previous record
  • Next record
  •    To hitlist

Search outside SwePub

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Close

Copy and save the link in order to return to this view