SwePub
Sök i LIBRIS databas

  Extended search

onr:"swepub:oai:research.chalmers.se:9022f7f5-c95c-4a54-b492-5a925e5276a2"
 

Search: onr:"swepub:oai:research.chalmers.se:9022f7f5-c95c-4a54-b492-5a925e5276a2" > Dynamic and Progres...

  • 1 of 1
  • Previous record
  • Next record
  •    To hitlist

Dynamic and Progressive Control of DNA Origami Conformation by Modulating DNA Helicity with Chemical Adducts

Chen, H. R. (author)
Purdue University
Zhang, H. Y. (author)
Purdue University
Pan, J. (author)
Purdue University
show more...
Cha, T. G. (author)
Purdue University
Li, Shiming, 1947 (author)
Chalmers tekniska högskola,Chalmers University of Technology
Andreasson, Joakim, 1973 (author)
Chalmers tekniska högskola,Chalmers University of Technology
Choi, J. H. (author)
Purdue University
show less...
 (creator_code:org_t)
2016-04-12
2016
English.
In: ACS Nano. - : American Chemical Society (ACS). - 1936-086X .- 1936-0851. ; 10:5, s. 4989-4996
  • Journal article (peer-reviewed)
Abstract Subject headings
Close  
  • DNA origami has received enormous attention for its ability to program complex nanostructures with a few nanometer precision. Dynamic origami structures that change conformation in response to environmental cues or external signals hold great promises in sensing and actuation at the nanoscale. The reconfiguration mechanism of existing dynamic origami structures is mostly limited to single-stranded hinges and relies almost exclusively on DNA hybridization or strand displacement. Here, we show an alternative approach by demonstrating on-demand conformation changes with DNA-binding molecules, which intercalate between base pairs and unwind DNA double helices. The unwinding effect modulates the helicity mismatch in DNA origami, which significantly influences the internal stress and the global conformation of the origami structure. We demonstrate the switching of a polymerized origami nanoribbon between different twisting states and a well-constrained torsional deformation in a monomeric origami shaft. The structural transformation is shown to be reversible, and binding isotherms confirm the reconfiguration mechanism. This approach provides a rapid and reversible means to change DNA origami conformation, which can be used for dynamic and progressive control at the nanoscale.

Subject headings

NATURVETENSKAP  -- Kemi -- Fysikalisk kemi (hsv//swe)
NATURAL SCIENCES  -- Chemical Sciences -- Physical Chemistry (hsv//eng)

Keyword

conformation change
DNA binding
DNA origami

Publication and Content Type

art (subject category)
ref (subject category)

Find in a library

  • ACS Nano (Search for host publication in LIBRIS)

To the university's database

  • 1 of 1
  • Previous record
  • Next record
  •    To hitlist

Search outside SwePub

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Close

Copy and save the link in order to return to this view