SwePub
Sök i LIBRIS databas

  Extended search

onr:"swepub:oai:research.chalmers.se:9113fac5-be7e-42f4-81cd-8ab5aafd69cc"
 

Search: onr:"swepub:oai:research.chalmers.se:9113fac5-be7e-42f4-81cd-8ab5aafd69cc" > Elastic-viscoplasti...

  • 1 of 1
  • Previous record
  • Next record
  •    To hitlist

Elastic-viscoplastic self-consistent modeling for finite deformation of polycrystalline materials

Li, Hongjia, 1985 (author)
Chalmers tekniska högskola,Chalmers University of Technology,China Academy of Engineering Physics
Larsson, Fredrik, 1975 (author)
Chalmers tekniska högskola,Chalmers University of Technology
Hörnqvist Colliander, Magnus, 1979 (author)
Chalmers tekniska högskola,Chalmers University of Technology
show more...
Ekh, Magnus, 1969 (author)
Chalmers tekniska högskola,Chalmers University of Technology
show less...
 (creator_code:org_t)
Elsevier BV, 2021
2021
English.
In: Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing. - : Elsevier BV. - 0921-5093. ; 799
  • Journal article (peer-reviewed)
Abstract Subject headings
Close  
  • Anisotropic 1-site and 2-site self-consistent models are developed to describe the elastic-viscoplastic behavior of polycrystalline materials deformed to finite strains on the basis of rate-dependent crystallographic slip and a generalized Hill-Hutchinson self-consistent approach. The choice of rate-dependent constitutive law at single crystal level implemented in the models is discussed through fitting experimental data and calibrating viscous parameters. It is found that drag-stress type Norton law works well for the 1-site elastic-viscoplastic self-consistent (EVPSC) model while threshold stress type Norton law is suitable for the 2-site EVPSC model to assure that the viscoplastic inter-granular interaction is realistic. Both models have been verified by thoroughly fitting experimental data in literatures. For the 1-site EVPSC model, selected experimental data covers both macroscopic and microscopic mechanical responses of steels during deformation with a large range of strain rate from the quasi-static (10−4s−1) to the dynamic (~104s−1). For the 2-site EVPSC model, in situ neutron diffraction data of nickel-based superalloys with various microstructures was fitted. Both models generally fit the experimental data well. A comparison between the EVPSC and elastic-plastic self-consistent (EPSC) models on the prediction of lattice strains has also been made for both the 1-site and 2-site cases, which verifies the predictability on lattice strains of the newly developed EVPSC models. A validation of the homogenization approach for the EVPSC modeling has been performed, which confirms that the proposed EVPSC models are applicable for cubic structure materials with finite deformations. Our formulation of EVPSC modeling developed in this work shines a spotlight on the way of developing a multi-functional self-consistent model to predict both macroscopic and microscopic deformation behaviors of various polycrystalline materials under different loading rates of 10−4s−1~104s−1.

Subject headings

TEKNIK OCH TEKNOLOGIER  -- Maskinteknik -- Teknisk mekanik (hsv//swe)
ENGINEERING AND TECHNOLOGY  -- Mechanical Engineering -- Applied Mechanics (hsv//eng)
TEKNIK OCH TEKNOLOGIER  -- Materialteknik -- Metallurgi och metalliska material (hsv//swe)
ENGINEERING AND TECHNOLOGY  -- Materials Engineering -- Metallurgy and Metallic Materials (hsv//eng)

Keyword

Finite deformation
Elastic-viscoplastic self-consistent (EVPSC) model
In situ neutron Diffraction
Polycrystalline materials

Publication and Content Type

art (subject category)
ref (subject category)

Find in a library

To the university's database

  • 1 of 1
  • Previous record
  • Next record
  •    To hitlist

Search outside SwePub

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Close

Copy and save the link in order to return to this view