SwePub
Sök i LIBRIS databas

  Extended search

onr:"swepub:oai:research.chalmers.se:9f9011aa-3e5d-4413-85bd-7dec56c65bc6"
 

Search: onr:"swepub:oai:research.chalmers.se:9f9011aa-3e5d-4413-85bd-7dec56c65bc6" > Thermo-optical perf...

  • 1 of 1
  • Previous record
  • Next record
  •    To hitlist

Thermo-optical performance of molecular solar thermal energy storage films

Refaa, Zakariaa, 1987 (author)
Chalmers tekniska högskola,Chalmers University of Technology
Hofmann, Anna, 1987 (author)
Chalmers tekniska högskola,Chalmers University of Technology
Castro, Marcial Fernandez (author)
Danmarks Tekniske Universitet,Technical University of Denmark
show more...
Orrego Hernandez, Jessica, 1987 (author)
Chalmers tekniska högskola,Chalmers University of Technology
Wang, Zhihang, 1989 (author)
Chalmers tekniska högskola,Chalmers University of Technology
Hölzel, Helen, 1991 (author)
Chalmers tekniska högskola,Chalmers University of Technology
Andreasen, Jens Wenzel (author)
Danmarks Tekniske Universitet,Technical University of Denmark
Moth-Poulsen, Kasper, 1978 (author)
Chalmers tekniska högskola,Chalmers University of Technology
Sasic Kalagasidis, Angela, 1968 (author)
Chalmers tekniska högskola,Chalmers University of Technology
show less...
 (creator_code:org_t)
Elsevier BV, 2022
2022
English.
In: Applied Energy. - : Elsevier BV. - 1872-9118 .- 0306-2619. ; 310
  • Journal article (peer-reviewed)
Abstract Subject headings
Close  
  • Due to their potential for solar energy harvesting and storage, molecular solar thermal energy storage (MOST) materials are receiving wide attention from both the research community and the public. MOST materials absorb photons and convert their energy to chemical energy, which is contained within the bonds of the MOST molecules. Depending on the molecular structure, these materials can store up to 1 MJ/kg, at ambient temperature and with storage times ranging from minutes to several years. This work is the first to thoroughly investigate the potential of MOST materials for the development of energy saving windows. To this end, the MOST molecules are integrated into thin, optically transparent films, which store solar energy during the daytime and release heat at a later point in time. A combined experimental and modeling approach is used to verify the system's basic functionality and identify key parameters. Multi-physics modeling and simulation were conducted to evaluate the interaction of MOST films with light, both monochromatic and the entire solar spectrum, as well as the corresponding dynamic energy storage. The model was experimentally verified by studying the optical response of thin MOST films containing norbornadiene derivatives as a functional system. We found that the MOST films act as excellent UV shield and can store up to 0.37 kWh/m2 for optimized MOST molecules. Further, this model allowed us to screen various material parameters and develop guidelines on how to optimize the performance of MOST window films.

Subject headings

NATURVETENSKAP  -- Fysik -- Atom- och molekylfysik och optik (hsv//swe)
NATURAL SCIENCES  -- Physical Sciences -- Atom and Molecular Physics and Optics (hsv//eng)
NATURVETENSKAP  -- Fysik -- Annan fysik (hsv//swe)
NATURAL SCIENCES  -- Physical Sciences -- Other Physics Topics (hsv//eng)
TEKNIK OCH TEKNOLOGIER  -- Materialteknik -- Annan materialteknik (hsv//swe)
ENGINEERING AND TECHNOLOGY  -- Materials Engineering -- Other Materials Engineering (hsv//eng)

Keyword

Energy saving
Coating
Solar energy storage
Simulation
Molecular solar thermal energy storage
Multiphysical modeling

Publication and Content Type

art (subject category)
ref (subject category)

Find in a library

To the university's database

  • 1 of 1
  • Previous record
  • Next record
  •    To hitlist

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Close

Copy and save the link in order to return to this view