SwePub
Sök i LIBRIS databas

  Extended search

onr:"swepub:oai:research.chalmers.se:a9b72847-260e-47c4-b185-26f50a1df8e8"
 

Search: onr:"swepub:oai:research.chalmers.se:a9b72847-260e-47c4-b185-26f50a1df8e8" > The unbearable opaq...

  • 1 of 1
  • Previous record
  • Next record
  •    To hitlist

The unbearable opaqueness of Arp220

Martin, S. (author)
Atacama Large Millimeter-submillimeter Array (ALMA),European Southern Observatory Santiago,Institut de Radioastronomie Millimétrique (IRAM)
Aalto, Susanne, 1964 (author)
Chalmers tekniska högskola,Chalmers University of Technology
Sakamoto, K. (author)
Academia Sinica Taiwan
show more...
Gonzalez-Alfonso, E. (author)
Universidad de Alcala,University of Alcalá
Muller, Sebastien, 1976 (author)
Chalmers tekniska högskola,Chalmers University of Technology
Henkel, C. (author)
Max Planck Gesellschaft zur Förderung der Wissenschaften e.V. (MPG),Max Planck Society for the Advancement of Science (MPG),King Abdulaziz University
Burillo, S. G. (author)
Observatorio Astronómico Nacional (OAN),Spanish National Observatory (OAN)
Aladro, Rebeca, 1979 (author)
Chalmers tekniska högskola,Chalmers University of Technology
Costagliola, Francesco, 1981 (author)
Chalmers tekniska högskola,Chalmers University of Technology
Harada, N. (author)
Academia Sinica Taiwan
Krips, M. (author)
Institut de Radioastronomie Millimétrique (IRAM)
Martin-Pintado, J. (author)
Instituto Nacional de Tecnica Aeroespacial
Muhle, S. (author)
van der Werf, P. (author)
Universiteit Leiden (UL),Leiden University (UL)
Viti, S. (author)
University College London (UCL)
show less...
 (creator_code:org_t)
2016-05-02
2016
English.
In: Astronomy and Astrophysics. - : EDP Sciences. - 0004-6361 .- 1432-0746. ; 590, s. Art. no. 25-
  • Journal article (peer-reviewed)
Abstract Subject headings
Close  
  • Context. The origin of the enormous luminosities of the two opaque nuclei of Arp 220, the prototypical ultra-luminous infrared galaxy, remains a mystery because we lack observational tools to explore the innermost regions around the nuclei. Aims. We explore the potential of imaging vibrationally excited molecular emission at high angular resolution to better understand the morphology and physical structure of the dense gas in Arp 220 and to gain insight into the nature of the nuclear powering sources. Methods. The Atacama Large Millimeter/submillimeter Array (ALMA) provided simultaneous observations of HCN, HCO+, and vibrationally excited HCN v2 = 1f emission. Their J = 4-3 and 3-2 transitions were observed at a matching resolution of ~0.5??, which allows us to isolate the emission from the two nuclei. Results. The HCN and HCO+ lines within the ground-vibrational state poorly describe the central ~100 pc region around the nuclei because there are strong effects of cool absorbing gas in the foreground and severe line blending that is due to the prolific molecular emission of Arp 220. Vibrationally excited emission of HCN is detected in both nuclei with a very high ratio relative to the total LFIR, higher than in any other observed galaxy and well above what is observed in Galactic hot cores. HCN v2 = 1f is observed to be marginally resolved in ~60 × 50 pc regions inside the dusty ~100 pc sized nuclear cores. Its emission is centered on our derived individual nuclear velocities based on HCO+ emission (VWN = 5342 ± 4 and VEN = 5454 ± 8 km s-1, for the western and eastern nucleus, respectively). With virial masses within r ~ 25-30 pc based on the HCN v2 = 1f line widths, we estimate gas surface densities (gas fraction fg = 0.1) of 3 ± 0.3 × 104 M? pc-2 (WN) and 1.1 ± 0.1 × 104 M? pc-2 (EN). The 4-3/3-2 flux density ratio could be consistent with optically thick emission, which would further constrain the size of the emitting region to >15 pc (EN) and >22 pc (WN). The absorption systems that may hide up to 70% of the HCN and HCO+ emission are found at velocities of-50 km s-1 (EN) and 6,-140, and-575 km s-1 (WN) relative to velocities of the nuclei. Blueshifted absorptions are the evidence of outflowing motions from both nuclei. Conclusions. Although vibrationally excited molecular transitions could also be affected by opacity, they may be our best tool to peer into the central few tens of parsecs around compact obscured nuclei like those of Arp 220. The bright vibrational emission implies the existence of a hot dust region radiatively pumping these transitions. We find evidence of a strong temperature gradient that would be responsible for both the HCN v2 pumping and the absorbed profiles from the vibrational ground state as a result of both continuum and self-absorption by cooler foreground gas.

Subject headings

NATURVETENSKAP  -- Fysik -- Astronomi, astrofysik och kosmologi (hsv//swe)
NATURAL SCIENCES  -- Physical Sciences -- Astronomy, Astrophysics and Cosmology (hsv//eng)

Keyword

ISM: abundances
Galaxies: nuclei
Galaxies: ISM
ISM: molecules
Galaxies: individual: Arp 220

Publication and Content Type

art (subject category)
ref (subject category)

Find in a library

To the university's database

  • 1 of 1
  • Previous record
  • Next record
  •    To hitlist

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Close

Copy and save the link in order to return to this view