SwePub
Sök i LIBRIS databas

  Extended search

onr:"swepub:oai:research.chalmers.se:bd6cacf8-abe1-411b-9631-5ebf4d708d39"
 

Search: onr:"swepub:oai:research.chalmers.se:bd6cacf8-abe1-411b-9631-5ebf4d708d39" > Reflection waves fr...

  • 1 of 1
  • Previous record
  • Next record
  •    To hitlist

Reflection waves from high speed trains - adaptive FE solutions

Ekevid, Torbjörn, 1973 (author)
Chalmers tekniska högskola,Chalmers University of Technology
Lane, Håkan, 1975 (author)
Chalmers tekniska högskola,Chalmers University of Technology
Wiberg, Nils-Erik, 1938 (author)
Chalmers tekniska högskola,Chalmers University of Technology
 (creator_code:org_t)
2003
2003
English.
In: Mekanikdagar 2003, Göteborg 13 - 15 Augusti.. ; , s. 66-
  • Conference paper (other academic/artistic)
Abstract Subject headings
Close  
  • Wave propagation in solid materials is of great interest in many engineering applications. The fact that the area of interest changes with time gives a number of computational problems like the need of time and place dependent mesh density. This means that the mesh must be continuously updated and controlled, leading to a large demand of computer effort. In some applications like in railway mechanics loads are moving which gives rise to certain problems like shock waves when the speed of the moving load is close to the natural speed in the underlying soil material[1]. Related to such problems the wave has to leave the defined finite element domain without reflection, which demands certain methods.The paper will deal with quality controlled FE-procedures for wave propagation including error estimation[2] and mesh refinement/coarsening. As the problems are large (3D) and need many steps in time and iteration processes to handle nonlinearities direct solvers are out of question, and iterative techniques based on multigrid[3] have to be used. As an application an important problem from railway mechanics is considered. When a high speed train approaches an area with decreasing thickness of underlying soft soil on a stiff rock, a reflection of the wave will increase the total height of the wave, in a similar way as when sea waves approaches a shallow shore; it becomes much higher and brakes. We will study this problem with the procedures described above in 2D as well as in full 3D with partly absorbing boundaries.References:[1]T. Ekevid, Computational Solid Wave Propagation Numerical Techniques and Industrial Applications, Ph. D. thesis, Department of Structural Mechanics, Chalmers University of Technology, Publication 02:10, 2002.[2]K. Eriksson, D. Estep, P. Hansbo, C. Johnson, Computational Differential Equations, Studentlitteratur, Lund, Sweden, (1996).[3]U. Trottenberg, C. Oosterlee and A. Schüller, Multigrid, Academic Press, London (2001).

Subject headings

TEKNIK OCH TEKNOLOGIER  -- Samhällsbyggnadsteknik (hsv//swe)
ENGINEERING AND TECHNOLOGY  -- Civil Engineering (hsv//eng)

Keyword

Adaptivity
Railway mechanics
Iterative
Error estimates
Multigrid

Publication and Content Type

kon (subject category)
vet (subject category)

To the university's database

  • 1 of 1
  • Previous record
  • Next record
  •    To hitlist

Find more in SwePub

By the author/editor
Ekevid, Torbjörn ...
Lane, Håkan, 197 ...
Wiberg, Nils-Eri ...
About the subject
ENGINEERING AND TECHNOLOGY
ENGINEERING AND ...
and Civil Engineerin ...
Articles in the publication
By the university
Chalmers University of Technology

Search outside SwePub

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Close

Copy and save the link in order to return to this view