SwePub
Sök i LIBRIS databas

  Extended search

onr:"swepub:oai:research.chalmers.se:c88b320c-5985-446c-9c8a-5fa154d0c1b9"
 

Search: onr:"swepub:oai:research.chalmers.se:c88b320c-5985-446c-9c8a-5fa154d0c1b9" > Squeezing All Eleme...

  • 1 of 1
  • Previous record
  • Next record
  •    To hitlist

Squeezing All Elements in the Periodic Table: Electron Configuration and Electronegativity of the Atoms under Compression

Rahm, Martin, 1982 (author)
Chalmers tekniska högskola,Chalmers University of Technology
Cammi, Roberto (author)
Universita degli Studi di Parma,University of Parma
Ashcroft, N. W. (author)
Cornell University
show more...
Hoffmann, Roald (author)
Cornell University
show less...
 (creator_code:org_t)
2019-05-30
2019
English.
In: Journal of the American Chemical Society. - : American Chemical Society (ACS). - 1520-5126 .- 0002-7863. ; 141:26, s. 10253-10271
  • Journal article (peer-reviewed)
Abstract Subject headings
Close  
  • We present a quantum mechanical model capable of describing isotropic compression of single atoms in a non-reactive neon-like environment. Studies of 93 atoms predict drastic changes to ground-state electronic configurations and electronegativity in the pressure range of 0-300 GPa. This extension of atomic reference data assists in the working of chemical intuition at extreme pressure and can act as a guide to both experiments and computational efforts. For example, we can speculate on the existence of pressure-induced polarity (red-ox) inversions in various alloys. Our study confirms that the filling of energy levels in compressed atoms more closely follows the hydrogenic aufbau principle, where the ordering is determined by the principal quantum number. In contrast, the Madelung energy ordering rule is not predictive for atoms under compression. Magnetism may increase or decrease with pressure, depending on which atom is considered. However, Hund's rule is never violated for single atoms in the considered pressure range. Important (and understandable) electron shifts, s→p, s→d, s→f, and d→f are essential chemical and physical consequences of compression. Among the specific intriguing changes predicted are an increase in the range between the most and least electronegative elements with compression; a rearrangement of electronegativities of the alkali metals with pressure, with Na becoming the most electropositive s1 element (while Li becomes a p group element and K and heavier become transition metals); phase transitions in Ca, Sr, and Ba correlating well with s→d transitions; spin-reduction in all d-block atoms for which the valence d-shell occupation is dn (4 ≤ n ≤ 8); d→f transitions in Ce, Dy, and Cm causing Ce to become the most electropositive element of the f-block; f→d transitions in Ho, Dy, and Tb and a s→f transition in Pu. At high pressure Sc and Ti become the most electropositive elements, while Ne, He, and F remain the most electronegative ones.

Subject headings

NATURVETENSKAP  -- Fysik -- Atom- och molekylfysik och optik (hsv//swe)
NATURAL SCIENCES  -- Physical Sciences -- Atom and Molecular Physics and Optics (hsv//eng)
NATURVETENSKAP  -- Kemi -- Teoretisk kemi (hsv//swe)
NATURAL SCIENCES  -- Chemical Sciences -- Theoretical Chemistry (hsv//eng)
NATURVETENSKAP  -- Fysik -- Den kondenserade materiens fysik (hsv//swe)
NATURAL SCIENCES  -- Physical Sciences -- Condensed Matter Physics (hsv//eng)

Publication and Content Type

art (subject category)
ref (subject category)

Find in a library

To the university's database

  • 1 of 1
  • Previous record
  • Next record
  •    To hitlist

Search outside SwePub

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Close

Copy and save the link in order to return to this view